自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Johnny的专栏

Email : johnnynode@gmail.com | Github : github.com/johnnynode | Website : johnnynode.com

  • 博客(595)
  • 论坛 (1)
  • 收藏
  • 关注

原创 数据结构与算法笔记:减治策略之详解Dijkstra算法

最短路径 Shortest Path最短路径问题,如上图(右),求从地图上某一点出发, 到另一点的最短路径解决这类问题,首先要把真实的地图变成计算机中的Graph(图结构),如上图(中)在这个Graph中的每一个节点都是有意义的一个地点,这些点之间都可能有一些边,表示两者的距离或者称为通信的代价这些代价可能是距离,也可能是时间,也可能是油费,路费,不一而足这个算法出自图领奖得主鼎鼎大名的计算机科学家Dijkstra,中文译为:迪杰斯特拉, 如上图(左)原理 Principle上图右边

2020-09-21 19:50:50 102

原创 数据结构与算法笔记: 减治策略之Heap Exend, Binary Search, Selection Sort, Heap Sort, Insertion Sort, Quick Select

Heap 堆的补充从逻辑结构上理解堆是一种树形结构,这种树是一种几乎完美的树,也就是完全二叉树完全二叉树 complete binary tree特点是:在非(倒数第一和倒数第二)层结构上的节点都是孩子双全的在倒数第一和倒数第二层结构上的节点是没有分支或单分支的在倒数第二层:叶子节点必须紧密排列在右侧在倒数第一层:叶子节点必须紧密排列在左侧宏观上看就像是一棵三角形的树,在右下侧可能会有一定的缺失这就是完全二叉树,如上图树形结构所示如果没有单分支的节点(宏观上看右下侧没有缺失)叫做

2020-09-18 22:03:37 88

原创 数据结构与算法笔记:贪心策略之BST&BBST, Hashtable+Dictionary+Map, Priority Queue~Heap, Minium Spanning Tree

BST & BBSTBST(Binary Search Tree) 二叉搜索树,也就是使用二叉树来做查找BBST(Balanced Binary Search Tree) 平衡二叉搜索树1 ) BST 备注:图片托管于github,请确保网络的可访问性 比如我们有一堆书,需要经常在其中找到某一本数,如何有效查找呢?将所有的书先做一遍预处理:编个号,排个序,接下来就可以很方便的在其中做查找树的查找每次都是从根部开始进行比较,比较之后将我们的目光

2020-08-14 20:39:16 235

原创 数据结构与算法笔记:贪心策略之 Matrix Sorting, PFC Coding, Huffman Tree

矩阵排序 Matrix Sorting一个矩阵先进行逐列排序,再进行逐行排序,之后逐列仍旧保持有序 备注:图片托管于github,请确保网络的可访问性 上图分上下两排, 一排二图为一个随机的矩阵, 一排三图为列排序后的矩阵,一排四图为行排序后的矩阵可见,一排四图在列上虽然元素发生了变化,但仍旧有序,如何证明这个问题?分析在进行完列上的排序后, 比如得到上图的从上到下依次递增的一排三图, 之后我们开始进行行上的排序假如我们使用同一排序算法比如: bu

2020-08-07 19:04:10 72

原创 数据结构与算法笔记:Gnome Sort, Bubble Sort以及贪心策略的相关对比改进

关于算法算法其实有无数种,就市面上的算法而言,普通人可能知道的算法不到千百分之一,但是我们却可以一定程度上驾驭算法,是因为我们知道算法设计的策略我们在解决问题的时候,头脑中想到的都是策略,这些算法可以串成一串,每一串可能都是基于一种策略设计出来的Big-O 记号我们研究算法,需要懂得如何判断算法的优劣,越好的算法消耗的资源就越少计算的资源有两点:一个是时间,另一个空间,我们最主要关注的其实还是时间 备注:图片托管于github,请确保网络的可访问性

2020-08-06 20:30:50 59

原创 数据结构与算法笔记:Big-O记号, 数据结构与算法的关系以及几种基本的数据结构

算法和数据结构的关系算法和数据结构是一个硬币的两面, 好的算法在研究透了以后会慢慢积淀为数据结构高级算法的支撑都来自于数据结构几种基本的数据结构1 ) Array & Vector 备注:图片托管于github,请确保网络的可访问性 最基本的线性结构是Array,一个线性的序列n个元素排成一行,下标从0开始,到n-1结束,如果要用n表示,请注意左闭右开表示方法:A[n]、A[0, n-1]、A[0, n)Array后来被封装起来变成了Ve

2020-08-06 12:18:22 68

原创 数据结构与算法笔记:抽象思维之代码重构,隔离变化(从填充数字旋转方阵开始)

编程输出N*N的数字方阵1 ) 任务编程输出NN的数字方阵,将1~NN的自然数逆时针旋转填充到矩阵中。例如一个6*6的矩阵完成填充后的示意图如下所示 备注:图片托管于github,请确保网络的可访问性 2 ) 一般思路每次填完一个矩形,剩下的又是一个矩形每次矩形的起点都不一样,如下图所示:1,21,33 备注:图片托管于github,请确保网络的可访问性 每一次小的矩形填写都与前一个矩形有类似的算法实现,我

2020-08-01 22:01:05 78

原创 数据结构与算法笔记:抽象思维之转换视角,提炼共性(分书和八皇后问题算法重构)

转换视角,提炼共性有时算法本身乍一看是不一样的,而且很不一样,比较结构特点,看不出来有什么共性如果我们转换下看问题的视角,是否能够找到共性呢1 ) 对比分书问题和八皇后问题 备注:图片托管于github,请确保网络的可访问性 这两个问题,其实差异很大,但是两者的与或图却非常类似这意味着,这两者在算法上是同一类问题,可以使用相同的程序来求解现在我们来转换一下视角 备注:图片托管于github,请确保网络的可访问性

2020-07-25 15:39:09 94

原创 数据结构与算法笔记:抽象思维之对比算法,发现共性(下楼梯台阶和象棋跳马问题算法重构)

关于抽象思维我们需要快速应对世界的复杂多变性,我们就需要有抽象思维抽象思维可以帮助我们提取共性,应对变化抽象思维是我们认识和表达复杂世界的关键抽象思维可以帮助我们分析藏在复杂现象背后的本质和规律对比算法,发现共性对比下楼问题和跳马问题两个问题的具体分析在前面的文章中已经完成,我们来对比一下两者两者结构很像,都用递归枚举算法, 下楼问题有三个分叉,跳马问题有四个分叉两者与或图基本相同,在算法上是同一类问题,可以使用基本相同的程序来求解两个不同场景下的问题是具有同一性质,但是它们并

2020-07-25 09:01:50 75

原创 数据结构与算法笔记:计算思维之人鬼渡河问题

人鬼渡河问题1 ) 问题描述目标:将东岸的3人3鬼通过一只小船安全转移到西岸,希望摆渡次数尽可能少条件船的容量有限,一次最多只能坐2人(或2鬼或1人1鬼)无论是在河的东岸还是在河的西岸,一旦鬼数多于人数,则人将被鬼吃掉怎样渡河的大权掌握在人的手中说明:划船的时间忽略不计。船一靠岸即将船与岸视为一体,人和鬼即使还没有下 船也视为已上岸任务:编写程序,求出一种渡河方案 备注:图片托管于github,请确保网络的可访问性 2 ) 分析目标是找

2020-07-22 22:13:08 96

原创 数据结构与算法笔记:计算思维之分书和八皇后问题

分书问题1 ) 问题描述有编号分别为 0、1、2、3、4 的五本书,准备分给A、B、C、D、E五个人。请你写一个程序,输出所有的分书方案,要求每个分书方案都能让每个人都皆大欢喜(即每人都分到感兴趣的书)。假定这5个人对5本书的阅读兴趣如下表: 备注:图片托管于github,请确保网络的可访问性 2 ) 分析初步分析上面的这个阅读兴趣表格可以用一个二维数组描述int like[5][5] = { {0, 0, 1, 1, 0}, {1

2020-07-21 15:59:14 70

原创 数据结构与算法笔记:计算思维之下楼梯台阶和象棋跳马问题

下台阶问题1 ) 问题描述从楼上走到楼下共有 h 个台阶,每一步有三种走法走一个台阶;走二个台阶;走三个台阶。问:一共可以走出多少种方案? 即共要多少步? 每一步走几级台阶?2 ) 分析初始思路我们根据题目给定的场景,先简单模拟一下,设定 h=4h=4h=4 备注:图片托管于github,请确保网络的可访问性 如上图所示, 这里有4阶楼梯, 红色数字代表每一步走几级台阶这里枚举了4层台阶的所有可能情况, 但是不管具体有几级台阶,下

2020-07-20 22:20:44 149

原创 数据结构与算法笔记:计算思维之谁做的好事与刑侦作案问题

谁做的好事清华附中有四位同学中的一位做了好事,不留名,表扬信来了之后,校长问这四位是谁做的好事。A说:不是我。B说:是C。C说:是D。D说:他胡说。已知:三个人说的是真话,一个人说的是假话。现在请你根据这些信息,编写程序找出做了好事的人。分析将四个人说的四句话(自然语言)转换成计算机可以计算的式子, 可使用循环枚举的方式来判断(1) 思路一:通过字符表示人先定义一个字符变量 thisman 表示要寻找的做了好事的人的“名字(代号)”(A、B、C、D),即char this

2020-07-19 20:22:37 122

原创 数据结构与算法笔记:字典序最大问题分析

字典序最大问题问题描述给定一个1到n的排列(无序状态的),依次插入到栈中,在每时每刻都可以多次从栈中弹出栈顶问:应如何使得弹出栈顶的序列的字典序最大,并输出这个序列问题分析什么是字典序比如两个序列:5,4,3,2,1和1,2,3,4,5这两个中第一个的字典序最大每个位置上的数字比其他序列上同一位置的数字要大比如:第一位置中5比1大,第二位置中4比2大这样即:字典序最大 = 从左向右看这个序列,每个数字都尽量大题目给定一个1到n的排列,每个数字只出现一次要使出栈的字典序最大

2020-07-18 21:19:48 73

原创 数据结构与算法笔记: 最大红矩形分析

最大红矩形问题描述有一个 n∗mn*mn∗m 的棋盘,棋盘上的每个点都是红的或绿的你需要找出一个面积最大的矩形区域,使得其中没有绿的格子输入格式第一行 2 个正整数 n,m,描述棋盘尺寸接下来 n 行描述这个棋盘,每行 m 个字符,每个字符为 . 或 X,其中 . 表示这个位置是红色的,X 表示这个位置是绿色的输出格式一行一个整数,表示最大面积。数据范围对于 30% 的数据,n,m<=100对于 60% 的数据,n,m<=400对于 100% 的数据,n,m

2020-07-18 17:01:54 60

原创 数据结构与算法笔记:求直方图最大面积算法分析

直方图最大面积问题描述有n列的直方图,第j列高度为hjh_jhj​, 求一个面积最大的子矩阵 备注:图片托管于github,请确保网络的可访问性 格式要求输入第一行正整数n,第二行n个空格隔开的非负整数数据范围: 所有直方图的列不会超过30000关键算法实现1 ) 算法1:时间复杂度为: O(n3)O(n^3)O(n3)的实现分析矩形面积为底和高的乘积底部从a到b,那么底边长为: b-a+1高为:min{hi∣a≤i≤b}min \{h

2020-07-16 19:21:35 120

原创 AI笔记: 数学基础之极大似然估计

极大似然估计法极大似然估计法是在总体的分布类型已知的条件下所使用的一种参数估计方法它首先是由德国数学家Gauss在1821年提出的,然而,这个方法常归功于英国统计学家FisherFisher在1922年重新发现了这一方法,并首先研究了这种方法的一些性质极大似然原理一个随机试验有若干个可能结果A,B,C, …。若在一次试验中,结果A发生,则一般认为试验条件对A最有利,即A发生的概率P(A/θ)P(A/\theta)P(A/θ)最大如: 甲{99红1黑,乙{1红99黑甲 \left \{\be

2020-07-16 08:31:36 67

原创 AI笔记: 数学基础之相关大数定理与参数估计方法-点估计、矩估计
原力计划

切比雪夫不等式(切比雪夫定理)设随机变量X的期望为μ\muμ, 方差为:σ2\sigma^2σ2, 对于任意的正数ε\varepsilonε, 有P{∣X−μ∣≥ε}≤σ2ε2P\{ |X - \mu| \geq \varepsilon \} \leq \frac{\sigma^2}{\varepsilon^2}P{∣X−μ∣≥ε}≤ε2σ2​切比雪夫不等式的含义:DX(方差)越小,时间{X−μ}<ε\{ X - \mu \} < \varepsilon{X−μ}<ε 发生的

2020-07-15 20:56:39 120

原创 AI笔记: 数学基础之数字特征-标准差、协方差、相关系数、中心矩、原点矩、峰度、偏度
原力计划

标准差标准差(Standard Deviation)是离均值平方的算术平均数的平方根,用符号σ\sigmaσ 表示,其实标准差就是方差的算术平方根标准差和方差都是测量离散趋势的最重要、最常见的指标。标准差和方差的不同点自傲与,标准差和变量的计算单位是相同的,比方差清楚,因此在很多分析的时候使用的是标准差σ=D(X)=∑(X−μ)2N\sigma = \sqrt{D(X)} = \sqrt{\frac{\sum (X-\mu)^2}{N}}σ=D(X)​=N∑(X−μ)2​​标准差的计算有这

2020-07-15 18:10:33 286

原创 AI笔记: 数学基础之数字特征-期望与方差

关于3σ3\sigma3σ法则 备注:图片托管于github,请确保网络的可访问性 3σ3\sigma3σ法则:3σ3\sigma3σ之外的数据可认为异常数据期望期望(mean): 也就是均值, 是概率加权下的"平均值",是每次可能结果的概率乘以其结果的总和, 反映的是随机变量平均取值大小, 常用符号μ\muμ表示连续型:E(X)=∫−∞∞xf(x)dxE(X) = \int_{-\infty}^{\infty} xf(x) dxE(X)=∫−∞∞​xf

2020-07-15 17:09:57 69 2

原创 AI笔记: 数学基础之连续型与均匀分布、指数分布、正态分布等
原力计划

连续型随机变量及其概率密度1 ) 连续型随机变量的概念与性质如果对于随机变量X的分布函数F(x),存在非函数f(x), 使得对于任意实数x, 有F(x)=∫−∞xf(t)dtF(x) = \int_{-\infty}^x f(t)dtF(x)=∫−∞x​f(t)dt,则称X为连续型随机变量, 其中函数f(x)称为X的概率密度函数,简称概率密度2 ) 关于不定积分的补充f(x) 在区间I上的原函数全体称为f(x)在I上的不定积分, 记为:∫f(x)dx\int f(x) dx∫f(x)dx,

2020-07-15 09:34:18 297

原创 AI笔记: 数学基础之随机变量与常见离散型及其分布

随机变量及其分布例1袋中有3只黑球,2只白球,从中任意去除3只球. 我们将3只黑球分别记为:1, 2, 3号, 2只白球分别记为4,5号, 则该实验的样本空间为 S={(1,2,3)(1,2,4)(1,2,5)(1,3,4)(1,3,5)(1,4,5)(2,3,4)(2,3,5)(2,4,5)(3,4,5)}S = \left \{\begin{array}{cccc} (1,2,3) & (1,2,4) & (1,2,5) \\ (1,3,4) & (1,3,5) &

2020-07-14 09:01:03 80

原创 AI笔记: 数学基础之贝叶斯公式(概率公式)

贝叶斯公式贝叶斯公式:P(A∣B)=P(B∣A)P(A)P(B)P(A|B) = \frac{P(B|A)P(A)}{P(B)}P(A∣B)=P(B)P(B∣A)P(A)​P(A): 在没有数据支持下,A发生的概率:先验概率或边缘概率P(A|B): 在已知B发生后A的条件概率,也就是由于得自B的取值而被称为A的后验概率P(B|A): 在已知A发生的情况下的概率分布,似然函数设A1、A2...AnA_1、A_2...A_nA1​、A2​...An​是样本空间Ω\OmegaΩ的一个划分,如果对

2020-07-13 20:37:29 87

原创 AI笔记: 数学基础之联合概率、条件概率与全概率公式

联合概率表示两个事件共同发生的概率,事件A和事件B的共同概率记为:P(AB)、P(A,B)P(AB)、P(A,B)P(AB)、P(A,B) 或者P(A∩B)P(A \cap B)P(A∩B), 记为事件A和事件B同时发生的概率 备注:图片托管于github,请确保网络的可访问性 条件概率事件A在另外一个事件B已经发生的条件下的发生概率叫做条件概率,表示为P(A∣B)P(A|B)P(A∣B), 读作:“在B条件下A发生的概率”一般情况下P(A∣B)≠P(A

2020-07-13 18:47:27 116

原创 AI笔记: 数学基础之向量的导数与概率论
原力计划

向量的导数A为m∗nm*nm∗n的矩阵,x为n∗1n*1n∗1的列向量,则Ax为m∗1m*1m∗1的列向量,记为:y⃗=A⋅x⃗\vec{y} = A·\vec{x}y​=A⋅xA=(a11a12⋯a1na21a22⋯a2n⋯⋯⋯⋯am1am2⋯amn)A =\left (\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\

2020-07-13 17:05:38 94

原创 AI笔记: 数学基础之正交矩阵与矩阵的QR分解

正交矩阵若n阶方阵A满足ATA=EA^TA = EATA=E, 则称A为正交矩阵, 简称正交阵 (复数域上称为酉矩阵)A是正交阵的充要条件:A的列(行)向量都是单位向量,且两两正交。若A为正交矩阵,x为向量,则Ax称为正交变换正交变换不改变向量的长度 y=Ax,yTy=(Ax)TAx=xTATAx=xTEx=xTxy=Ax, y^Ty = (Ax)^TAx = x^TA^TAx = x^TEx = x^Txy=Ax,yTy=(Ax)TAx=xTATAx=xTEx=xTx正交矩阵的性质

2020-07-13 12:16:33 193

原创 AI笔记: 数学基础之特征值与特征向量
原力计划

特征值和特征向量A为n阶矩阵,若数λ\lambdaλ和n维非0列向量x满足Ax=λxAx=\lambda xAx=λx, 那么数λ\lambdaλ称为A的特征值,x称为A的对应于特征值λ\lambdaλ的特征向量。并且∣λE−A∣|\lambda E - A|∣λE−A∣叫做A的特征多项式。当特征多项式等于0的时候,称为A的特征方程,特征方程是一个齐次线性方程组,求解特征值的过程其实就是求解特征方程的解。Ax=λx⇒Ax=λEx⇒(λE−A)x=0Ax = \lambda x \Rightarrow

2020-07-13 10:33:01 87

原创 AI笔记: 数学基础之齐次与非齐次线性方程组解的结构定理

对称矩阵元素以对角线为对称轴对应相等的矩阵就叫做对称矩阵对称矩阵具有的特性对称矩阵中aij=ajia_{ij} = a_{ji}aij​=aji​对称矩阵一定是方阵, 并且对于任何的方阵A, A+ATA + A^TA+AT是对称矩阵除对角线外的其他元素均为0的矩阵叫做对角矩阵矩阵中的每个元素都是实数的对称矩阵叫做实对称矩阵A={a11a12⋯a1na21a22⋯a2n⋯⋯⋯⋯an1an2⋯ann}A =\left \{\begin{array}{cccc}a_{11} & a_{1

2020-07-12 18:38:19 202

原创 AI笔记: 数学基础之向量组的线性表示与线性相关

向量组向量组:有限个相同维度的行向量或列向量组合成的一个集合就叫做向量组 A=(a1⃗,a2⃗,a3⃗,...,an⃗,...)A = (\vec{a_1}, \vec{a_2}, \vec{a_3}, ..., \vec{a_n}, ...)A=(a1​​,a2​​,a3​​,...,an​​,...)向量组是由多个向量构成,可以表示为矩阵正交向量当∣∣x∣∣=1||x|| = 1∣∣x∣∣=1时,称x为单位向量当∣∣x∣∣≠=0,∣∣y∣∣≠0||x|| \neq = 0, ||y||

2020-07-11 17:46:25 83

原创 AI笔记: 数学基础之矩阵的初等变换计算矩阵的秩

引例求解矩阵方程AX=B, 其中 A=(21−312−2−132),B=(1−120−25)A =\left (\begin{array}{cccc}2 & 1 & -3 \\1 & 2 & -2 \\-1 & 3 & 2\end{array} \right ), B =\left (\begin{array}{cccc}1 & -1 \\2 & 0 \\-2 & 5 \end{array} \right )A=⎝⎛​21−1​12

2020-07-11 15:37:57 123

原创 AI笔记: 数学基础之矩阵的初等变换
原力计划

概述用伴随矩阵和行列式求可逆矩阵非常复杂麻烦,尤其是随着n的增大,复杂度让人担忧应对n这个变量,可以使用矩阵的初等变换来求解矩阵的可逆矩阵矩阵的初等变换1) 消元法解线性方程组先来看下这个例子,从x1∼x4x_1 \sim x_4x1​∼x4​ 和 4个方程,求解线性方程组有这样一个方程组{2x1−x2−x3+x4=2①x1+x2−2x3+x4=4②4x1−6x2+2x3−2x4=4③3x1+6x2−9x3+7x4=9④\left \{\begin{array}{cccc}2x_1 -

2020-07-10 11:59:44 79

原创 AI笔记: 数学基础之矩阵运算与行列式

方阵行列式行列式是数学的一个函数,可以看做是几何空间中,一个线性变换对"面积"或"体积"的影响方阵行列式,n阶方阵A的行列式表示为∣A∣|A|∣A∣ 或者 det(A)1×1的方阵,其行列式等于该元素本身. A=(a11)   ∣A∣=a11A = (a_{11}) \ \ \ |A|= a_{11}A=(a11​)   ∣A∣=a11​2×2的方阵, 其行列式用主对角线元素成绩减去次对角线元素的乘积A=(a11a12a21a22)

2020-07-08 16:34:03 124

原创 AI笔记: 数学基础之线性代数与矩阵
原力计划

线性代数线性(linear)指量(变量)与量(变量)之间按比例、成线性关系,在数学上可以理解为一阶导数为常数的函数非线性(non-linear)是指不成比例、没有直线关系, 一阶导数不是常数的函数线性代数中的基本量指的是向量,基本关系是严格的线性关系,也就是可以简单的将线性代数理解为向量和向量之间的线性关系的映射矩阵矩阵:即描述线性代数中线性关系的参数,即矩阵是一个线性变换,可以将一些向量转换为另一些向量在初等代数中,y=ax表示的是x到y的一种映射关系,其中a是描述这种关系的参数在线性

2020-07-08 09:52:36 93

原创 AI笔记: 数学基础之定积分的性质

定积分的性质设所列定积分都存在(1) ∫abf(x)dx=−∫baf(x)dx⇒∫aaf(x)dx=0\int_a^b f(x) dx = - \int_b^a f(x) dx \Rightarrow \int_a^a f(x)dx = 0∫ab​f(x)dx=−∫ba​f(x)dx⇒∫aa​f(x)dx=0(2) ∫abdx=b−a\int_a^b dx = b - a∫ab​dx=b−a(3) ∫abkf(x)dx=k∫abf(x)dx\int_a^b k f(x) dx = k \int_a^

2020-07-07 19:42:33 133

原创 AI笔记: 数学基础之定积分的引例与定义
原力计划

概述积分学不定积分定积分定积分举例1 )举例 备注:图片托管于github,请确保网络的可访问性 矩形面积:S=ahS = ahS=ah梯形面积:S=h2(a+b)S = \frac{h}{2}(a+b)S=2h​(a+b)2 ) 曲面梯形的面积 备注:图片托管于github,请确保网络的可访问性 设曲边梯形是由连续曲线 y=f(x)(f(x)≥0y = f(x) (f(x) \geq 0y=f

2020-07-07 12:47:32 127

原创 AI笔记: 数学基础之方向导数的计算和梯度
原力计划

方向导数1 )定理若函数f(x,y,z)在点P(x,y,z)处可微,沿任意方向l的方向导数 ∂f∂l=∂f∂xcosα+∂f∂ycosβ+∂f∂zcosγ\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x} cos \alpha + \frac{\partial f}{\partial y} cos \beta + \frac{\partial f}{\partial z} cos \gamma∂l∂f​=∂x∂f​cosα+∂y∂

2020-07-07 08:52:41 225

原创 AI笔记: 数学基础之偏导数与方向导数
原力计划

多元函数偏导数在一个多变量的函数中,偏导数就是关于其中一个变量的导数而保持其他变量恒定不变。假定二元函数z=f(x,y)z=f(x,y)z=f(x,y), 点(x_0, y_0)是其定义域内的一个点,将y固定在y0y_0y0​上,而x在x0x_0x0​上增量△x\triangle x△x,相应的函数z有增量△z=f(x0+△x,y0)−f(x0,y0)\triangle z = f(x_0 + \triangle x, y_0) - f(x_0, y_0)△z=f(x0​+△x,y0​)−f(x0​

2020-07-04 23:06:55 109

原创 AI笔记: 数学基础之多元函数的概念和极限

多元函数1 ) 概念设D为一个非空的n 元有序数组的集合,f为某一确定的对应规则。若对于每一个有序数组 ( x1,x2,…,xn)∈D,通过对应规则f,都有唯一确定的实数y与之对应,则称对应规则f为定义在D上的n元函数。记为y=f(x1,x2,…,xn) 其中 ( x1,x2,…,xn)∈D。 变量x1,x2,…,xn称为自变量,y称为因变量。当n=1时,为一元函数,记为y=f(x),x∈D,当n=2时,为二元函数,记为z=f(x,y),(x,y)∈D。二元及以上的函数统称为多元函数。更好的

2020-07-04 15:33:33 101

原创 AI笔记: 数学基础之泰勒Taylor公式的变形和应用

泰勒公式的变形我们知道泰勒公式是这样的:f(x)=f(x0)0!+f′(x0)1!(x−x0)+f′′(x0)2!(x−x0)2+...+f(n)(x0)n!(x−x0)n+Rn(x)f(x) = \frac{f(x_0)}{0!} + \frac{f'(x_0)}{1!}(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + ... + \frac{f^{(n)(x_0)}}{n!}(x-x_0)^n + R_n(x)f(x)=0!f(x0​)​+1!f′(x0​)​(x−x

2020-07-04 13:26:48 258

原创 AI笔记: 数学基础之导数的应用:泰勒Taylor公式

Taylor公式的应用机器学习中广泛应用,数学建模,线性回归,预测等领域关于Taylor公式Taylor公式是用一个函数在某点的信息描述其附近取值的公式,如果函数足够平滑,在已知函数在某一点的各阶导数值的情况下Taylor公式可以利用这些导数值来做系数构建一个多项式近似函数在这一点的邻域中的值若函数f(x)在包含x0x_0x0​的某个闭区间[a,b]上具有n阶函数, 且在开区间(a,b)上具有n+1阶函数,则对闭区间[a,b]上任意一点x, 有Taylor公式如下注:f(n)(x)f^{(

2020-07-04 08:58:48 135

空空如也

Johnny丶me的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除