Python笔记:操作ndarray元素:访问、删除、插入

本文详细介绍了如何使用NumPy库进行数组元素的访问、修改、删除及插入等基本操作,并展示了垂直堆叠与水平堆叠的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引入

import numpy as np

在此引入一次,下面直接使用 np

访问ndarray元素

x = np.array([1, 2, 3, 4, 5])
print()
print('x = ', x)
print()
print('This is First Element in x:', x[0]) 
print('This is Second Element in x:', x[1])
print('This is Fifth (Last) Element in x:', x[4])
print()
print('This is First Element in x:', x[-5])
print('This is Second Element in x:', x[-4])
print('This is Fifth (Last) Element in x:', x[-1])

输出:

x = [1 2 3 4 5]

This is First Element in x: 1
This is Second Element in x: 2
This is Fifth (Last) Element in x: 5

This is First Element in x: 1
This is Second Element in x: 2
This is Fifth (Last) Element in x: 5
  • 在方括号 [ ] 中添加索引来访问元素。
  • 可以使用正索引和负索引访问 ndarray 中的元素。
  • 正索引表示从数组的开头访问元素,负索引表示从数组的末尾访问元素。
  • 正索引从 0 开始,负索引从 -1 开始。

修改ndarray元素

  • 修改秩为 1 的 ndarray :
x = np.array([1, 2, 3, 4, 5])
print()
print('Original:\n x = ', x)
print()
x[3] = 20
print('Modified:\n x = ', x)

输出:

Original: x = [1 2 3 4 5]

Modified: x = [ 1 2 3 20 5]
  • 修改秩为 2 的 ndarray
X = np.array([[1,2,3],[4,5,6],[7,8,9]])
print()
print('Original:\n X = \n', X)
print()
X[0,0] = 20
print('Modified:\n X = \n', X)

输出:

Original:
X =
[[1 2 3]
 [4 5 6]
 [7 8 9]]

Modified:
X =
[[20 2 3]
 [ 4 5 6]
 [ 7 8 9]]

删除ndarray元素

x = np.array([1, 2, 3, 4, 5])
Y = np.array([[1,2,3],[4,5,6],[7,8,9]])
print()
print('Original x = ', x)
x = np.delete(x, [0,4]) # 此处删除第一个和第五个(最后一个)元素
print()
print('Modified x = ', x)
print()
print('Original Y = \n', Y)
w = np.delete(Y, 0, axis=0) # 此处删除第一行的元素
v = np.delete(Y, [0,2], axis=1) # 此处删除第一列和第三列(最后一列)的元素
print()
print('w = \n', w)
print()
print('v = \n', v)

输出

Original x = [1 2 3 4 5]

Modified x = [2 3 4]

Original Y =
[[1 2 3]
 [4 5 6]
 [7 8 9]]

w =
[[4 5 6]
 [7 8 9]]

v =
[[2]
 [5]
 [8]]
  • 对于秩为 1 的 ndarray,不需要使用关键字 axis
  • 对于秩为 2 的 ndarray,axis = 0 表示选择行,axis = 1 表示选择列。

插入ndarray元素

  • 使用 np.append(ndarray, elements, axis) 函数向 ndarray 中附加值

    x = np.array([1, 2, 3, 4, 5])
    Y = np.array([[1,2,3],[4,5,6]])
    print()
    print('Original x = ', x)
    x = np.append(x, 6) # 秩为1的ndarray,直接append
    print()
    print('x = ', x)
    x = np.append(x, [7,8]) # 秩为1的ndarray,也可通过列表一次添加多个
    print()
    print('x = ', x)
    print()
    print('Original Y = \n', Y)
    v = np.append(Y, [[7,8,9]], axis=0) # 秩为2的ndarray,添加一行
    q = np.append(Y,[[9],[10]], axis=1) # 秩为2的ndarray,添加一列; 当然也可添加两列 q = np.append(Y,[[9,99],[10,100]], axis=1)
    print()
    print('v = \n', v)
    print()
    print('q = \n', q)
    

    输出:

    Original x = [1 2 3 4 5]
    
     x = [1 2 3 4 5 6]
     
     x = [1 2 3 4 5 6 7 8]
     
     Original Y =
     [[1 2 3]
      [4 5 6]]
     
     v =
     [[1 2 3]
      [4 5 6]
      [7 8 9]]
     
     q =
     [[ 1 2 3 9]
      [ 4 5 6 10]]
    
    
    • 该函数会将给定的元素列表沿着指定的轴附加到 ndarray 中。
    • 当我们将行或列附加到秩为 2 的 ndarray 中时,行或列的形状必须正确,以与秩为 2 的 ndarray 的形状相符。
  • 使用 np.insert(ndarray, index, elements, axis) 函数向 ndarray 中插入值

    x = np.array([1, 2, 5, 6, 7])
    Y = np.array([[1,2,3],[7,8,9]])
    print()
    print('Original x = ', x)
    x = np.insert(x,2,[3,4]) # 向秩为1的ndarray第三个元素前插入3和4
    print()
    print('x = ', x)
    print()
    print('Original Y = \n', Y)
    w = np.insert(Y,1,[4,5,6],axis=0) # 向秩为2的ndarray第二行前,插入4,5,6
    v = np.insert(Y,1,5, axis=1) # 向秩为2的ndarray前第二列前,插入5
    print()
    print('w = \n', w)
    print()
    print('v = \n', v)
    

    输出:

    Original x = [1 2 5 6 7]
    
    x = [1 2 3 4 5 6 7]
    
    Original Y =
    [[1 2 3]
     [7 8 9]]
    
    w =
    [[1 2 3]
     [4 5 6]
     [7 8 9]]
    
    v =
    [[1 5 2 3]
     [7 5 8 9]]
    
  • 此函数会将给定的元素列表沿着指定的轴插入到 ndarray 中,并放在给定的索引前面。

  • 使用 np.vstack() 函数进行垂直堆叠,或使用 np.hstack() 函数进行水平堆叠。

    x = np.array([1,2])
    Y = np.array([[3,4],[5,6]])
    print()
    print('x = ', x)
    print()
    print('Y = \n', Y)
    z = np.vstack((x,Y)) # 此处将x置于Y之上,形成新的ndarray
    w = np.hstack((Y,x.reshape(2,1))) # 此处将变形后的x置于Y的右侧,形成新的ndarray 
    print()
    print('z = \n', z)
    print()
    print('w = \n', w)
    

    输出:

    x = [1 2]
    
    Y =
    [[3 4]
     [5 6]]
    
    z =
    [[1 2]
     [3 4]
     [5 6]]
    
    w =
    [[3 4 1]
     [5 6 2]]
    
### 如何在 Python 列表中删除元素Python 中,可以通过多种方法从列表中移除元素。以下是几种常见的方法及其具体实现方式: #### 使用 `remove()` 方法 `myList.remove(element)` 可以通过指定要删除元素值来将其从列表中移除[^1]。如果该值不存在于列表中,则会引发 `ValueError` 错误。 ```python my_list = [1, 2, 3, 4, 5] element_to_remove = 3 if element_to_remove in my_list: my_list.remove(element_to_remove) print(my_list) # 输出: [1, 2, 4, 5] ``` #### 使用 `pop()` 方法 `myList.pop(index)` 或者仅调用 `myList.pop()` 能够按照索引位置或者默认最后一个位置删除元素,并返回被删除元素。如果没有提供参数,默认行为是从列表末尾弹出一个元素[^2]。 ```python my_list = ['a', 'b', 'c', 'd'] removed_element = my_list.pop(1) # 移除索引为1的元素'b' print(f"Removed Element: {removed_element}, List after pop: {my_list}") # 输出: Removed Element: b, List after pop: ['a', 'c', 'd'] last_removed = my_list.pop() # 默认移除最后一位'd' print(f"Last Removed Element: {last_removed}, Final List: {my_list}") # 输出: Last Removed Element: d, Final List: ['a', 'c'] ``` #### 清空整个列表 如果目标是清空整个列表而不是逐个删除元素,可以直接使用 `clear()` 方法清除所有项目。 ```python my_list = [0, 1, 2, 3, 4] my_list.clear() print(my_list) # 输出: [] ``` #### 批量删除多个元素 当需要一次性删除多个特定条件下的元素时,可以利用列表推导式配合过滤逻辑创建一个新的不包含这些项的新列表[^3]。 ```python original_list = [i for i in range(10)] filtered_list = [item for item in original_list if item % 2 != 0] print(filtered_list) # 输出奇数列表: [1, 3, 5, 7, 9] ``` 以上就是在 Python 中处理列表删除操作的主要手段总结。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wang's Blog

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值