后缀数组

本文详细介绍了一种构造Suffix Array的有效算法,通过使用桶排序和计数排序等技术来优化排序过程,实现了线性时间复杂度的Suffix Array构建。此外,还讨论了如何计算不同后缀间的最长公共前缀。
摘要由CSDN通过智能技术生成
int n, a[MAXN], sa[MAXN], rk[MAXN], ht[MAXN], st[MAXN][MAXLOGN + 1];
inline void suffixArray() {
    static int set[MAXN];
    std::copy(a, a + n, set);
    std::sort(set, set + n);
    int *end = std::unique(set, set + n);
    for (int i = 0; i < n; i++) a[i] = std::lower_bound(set, end, a[i]) - set;
    static int fir[MAXN], sec[MAXN], tmp[MAXN], _buc[MAXN + 1], *buc = _buc + 1;
    for (int i = 0; i < n; i++) buc[a[i]]++;
    for (int i = 0; i < n; i++) buc[i] += buc[i - 1];
    for (int i = 0; i < n; i++) rk[i] = buc[a[i] - 1];
    for (int t = 1; t < n; t <<= 1) {
        for (int i = 0; i < n; i++) fir[i] = rk[i];
        for (int i = 0; i < n; i++) sec[i] = (i + t >= n) ? -1 : fir[i + t];
        std::fill(buc - 1, buc + n, 0);
        for (int i = 0; i < n; i++) buc[sec[i]]++;
        for (int i = 0; i < n; i++) buc[i] += buc[i - 1];
        for (int i = 0; i < n; i++) tmp[n - buc[sec[i]]--] = i;
        std::fill(buc - 1, buc + n, 0);
        for (int i = 0; i < n; i++) buc[fir[i]]++;
        for (int i = 0; i < n; i++) buc[i] += buc[i - 1];
        for (int j = 0, i; j < n; j++) i = tmp[j], sa[--buc[fir[i]]] = i;
        for (int j = 0, i, last = -1; j < n; j++) {
            i = sa[j];
            if (last == -1) rk[i] = 0;
            else if (fir[i] == fir[last] && sec[i] == sec[last]) rk[i] = rk[last];
            else rk[i] = rk[last] + 1;
            last = i;
        }
    }
    for (int i = 0, k = 0; i < n; i++) {
        if (rk[i] == 0) k = 0;
        else {
            if (k > 0) k--;
            int j = sa[rk[i] - 1];
            while (i + k < n && j + k < n && a[i + k] == a[j + k]) k++;
        }
        ht[rk[i]] = k;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值