【干货】机器学习中样本比例不平衡的处理方法


推荐阅读时间:5min~12min


主要内容:机器学习中样本比例不平衡的处理方法


在机器学习中,常常会遇到样本比例不平衡的问题,如对于一个二分类问题,正负样本的比例是 10:1。

这种现象往往是由于本身数据来源决定的,如信用卡的征信问题中往往就是正样本居多。样本比例不平衡往往会带来不少问题,但是实际获取的数据又往往是不平衡的,因此本文主要讨论面对样本不平衡时的解决方法。

样本不平衡往往会导致模型对样本数较多的分类造成过拟合,即总是将样本分到了样本数较多的分类中;除此之外,一个典型的问题就是 Accuracy Paradox,这个问题指的是模型的对样本预测的准确率很高,但是模型的泛化能力差。

其原因是模型将大多数的样本都归类为样本数较多的那一类,如下所示

准确率为

而假如将所有的样本都归为预测为负样本,准确率会进一步上升,但是这样的模型显然是不好的,实际上,模型已经对这个不平衡的样本过拟合了。

针对样本的不平衡问题,有以下几种常见的解决思路

  1. 搜集更多的数据

  2. 改变评判指标

  3. 对数据进行采样

  4. 合成样本

  5. 改变样本权重

1
搜集更多的数据

搜集更多的数据,从而让正负样本的比例平衡,这种方法往往是最被忽视的方法,然而实际上,当搜集数据的代价不大时,这种方法是最有效的。

但是需要注意,当搜集数据的场景本来产生数据的比例就是不平衡时,这种方法并不能解决数据比例不平衡问题。

2
 改变评判指标

改变评判指标,也就是不用准确率来评判和选择模型,原因就是我们上面提到的 Accuracy Paradox 问题。实际上有一些评判指标就是专门解决样本不平衡时的评判问题的,如准确率,召回率,F1值,ROC(AUC),Kappa 等。

根据这篇文章,ROC 曲线具有不随样本比例而改变的良好性质,因此能够在样本比例不平衡的情况下较好地反映出分类器的优劣。

关于评判指标更详细的内容可参考文章: Classification Accuracy is Not Enough: More Performance Measures You Can Use

3
对数据进行采样

对数据采样可以有针对性地改变数据中样本的比例,采样一般有两种方式:over-sampling和 under-sampling,前者是增加样本数较少的样本,其方式是直接复制原来的样本,而后者是减少样本数较多的样本,其方式是丢弃这些多余的样本。

通常来说,当总样本数目较多的时候考虑 under-sampling,而样本数数目较少的时候考虑 over-sampling

关于数据采样更详细的内容可参考 Oversampling and undersampling in data analysis

4
合成样本

合成样本(Synthetic Samples)是为了增加样本数目较少的那一类的样本,合成指的是通过组合已有的样本的各个 feature 从而产生新的样本。

一种最简单的方法就是从各个 feature 中随机选出一个已有值,然后拼接成一个新的样本,这种方法增加了样本数目较少的类别的样本数,作用与上面提到的 over-sampling方法一样,不同点在于上面的方法是单纯的复制样本,而这里则是拼接得到新的样本。

这类方法中的具有代表性的方法是 SMOTE(Synthetic Minority Over-sampling Technique),这个方法通过在相似样本中进行 feature 的随机选择并拼接出新的样本。

关于 SMOTE 更详细的信息可参考论文 SMOTE: Synthetic Minority Over-sampling Technique

5
改变样本权重


改变样本权重指的是增大样本数较少类别的样本的权重,当这样的样本被误分时,其损失值要乘上相应的权重,从而让分类器更加关注这一类数目较少的样本。


参考:

更多文章请访问:http://wulc.me/

8 Tactics to Combat Imbalanced Classes in Your Machine Learning Dataset

In classification, how do you handle an unbalanced training set?


  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,很高兴为您解答这个问题。 在深度学习,数据增强是一种常用的技术,它可以通过对原始数据进行变换、裁剪、旋转、翻转等操作,来扩充训练集,从而提高模型的泛化能力和鲁棒性。在图像领域,常用的数据增强方法包括随机裁剪、随机旋转、随机翻转、色域变换等。下面,我将为您介绍如何使用 Python 对图像进行随机数据增强。 1. 随机裁剪 随机裁剪是一种简单而有效的数据增强方法,它可以通过对原始图像进行随机裁剪,来扩充训练集。在 Python ,我们可以使用 PIL 库的 Image 模块来实现随机裁剪。 ```python from PIL import Image import random def random_crop(img, crop_size): w, h = img.size left = random.randint(0, w - crop_size) top = random.randint(0, h - crop_size) right = left + crop_size bottom = top + crop_size return img.crop((left, top, right, bottom)) ``` 2. 随机旋转 随机旋转是一种常用的数据增强方法,它可以通过对原始图像进行随机旋转,来扩充训练集。在 Python ,我们可以使用 PIL 库的 Image 模块来实现随机旋转。 ```python from PIL import Image import random def random_rotate(img, angle_range): angle = random.uniform(-angle_range, angle_range) return img.rotate(angle) ``` 3. 随机翻转 随机翻转是一种简单而有效的数据增强方法,它可以通过对原始图像进行随机翻转,来扩充训练集。在 Python ,我们可以使用 PIL 库的 Image 模块来实现随机翻转。 ```python from PIL import Image import random def random_flip(img, flip_prob): if random.random() < flip_prob: return img.transpose(Image.FLIP_LEFT_RIGHT) return img ``` 4. 色域变换 色域变换是一种常用的数据增强方法,它可以通过对原始图像进行色彩变换,来扩充训练集。在 Python ,我们可以使用 PIL 库的 Image 模块来实现色域变换。 ```python from PIL import Image import random def random_color(img, color_range): r, g, b = img.split() r = r.point(lambda i: i + random.randint(-color_range, color_range)) g = g.point(lambda i: i + random.randint(-color_range, color_range)) b = b.point(lambda i: i + random.randint(-color_range, color_range)) return Image.merge('RGB', (r, g, b)) ``` 以上就是使用 Python 进行随机数据增强的一些常用方法,希望对您有所帮助。如果您有任何问题,请随时联系我。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值