LeetCode 53. 最大子序和

LeetCode 53. 最大子序和

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

进阶:
如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-subarray
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

1.暴力破解法

  • 代码

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int Max=nums[0];
        int count;
        for(int i=0;i<nums.size();i++)
        {
            
            count=nums[i];
            if(Max<count)Max=count;
            for(int j=i+1;j<nums.size();j++)
            {
                count+=nums[j];
                if(Max<count)Max=count;
            }
        }
        return Max;
    }
};
  • 结果分析

在这里插入图片描述
时间复杂度O(n^2)
空间复杂度O(1);

2.动态规划

  • 思路解析

遍历数组,从第一个元素开始相加,如果和为正数则继续加下去,如果和为负数则忘记和,从下一元素开始重新相加,直到数组尾部。

  • 代码

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int Max=nums[0] ,count=0;
        for(int i=0;i<nums.size();i++)
        {
            if(Max<nums[i])Max=nums[i];
            if(count+nums[i]<0) 
            {
                count=0;
                continue;
            }
            else
            {
                count+=nums[i];
                if(Max<count)Max=count;
            }
        }
        return Max;
    }
};
  • 结果分析

jieguo
时间复杂度O(n)

3.分治法待续。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值