先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip204888 (备注大数据)
正文
变压器油温预测 预测 https://aistudio.baidu.com/aistudio/datasetdetail/106143
- 3 印度每日发电量
简介:研究印度的日常能源发电
名称 标签 数据集链接
印度每日发电量 能源,回归 https://aistudio.baidu.com/aistudio/datasetdetail/106610 - 4 国际能源统计
简介:本数据集包含1990-2014年全球能源贸易与生产数据
名称 标签 数据集链接
国际能源统计 经济学、能源、机器学习 https://aistudio.baidu.com/aistudio/datasetdetail/106551 - 5 太阳能发电数据
简介:数据集来自两个电厂的太阳能发电数据和传感器数据。
名称 标签 数据集链接
太阳能发电数据 机器学习、能源 https://aistudio.baidu.com/aistudio/datasetdetail/106646 - 6 LANL_特征
简介:此数据集包含了从LANL竞争数据中提取的特征,其中有来自内核和训练目标变量的所有987个训练和测试数据特征。
名称 标签 数据集链接
LANL_特征 表格数据、生成 https://aistudio.baidu.com/aistudio/datasetdetail/106697 - 7 中国八大碳市场价格行情数据2013年6月-2021年3月
简介:中国八大碳市场价格行情数据2013年6月-2021年3月,可以进行碳交易量及价格预测和各个区域市场需求预测。
名称 标签 数据集链接
中国八大碳市场价格行情数据2013年6月-2021年3月 环境、能源 https://aistudio.baidu.com/aistudio/datasetdetail/121682 - 8 中国地级市碳排放数据1997-2017年353地级市
简介:排放清单根据中国统计局最新能源数据修订版(2015年)编制。请注意:由于方法的不同,采用表观排放量核算法和部门法得出的结果有时略有不同,城市碳排放量通过所辖县排放量求得。
名称 标签 数据集链接
中国地级市碳排放数据1997-2017年353地级市 环境、能源 https://aistudio.baidu.com/aistudio/datasetdetail/121686 - 9 中国县区碳排放数据1997-2017年2735县区,根据2010年中国区划
简介:排放清单根据中国统计局最新能源数据修订版(2015年)编制。请注意:由于方法的不同,采用表观排放量核算法和部门法得出的结果有时略有不同。
名称 标签 数据集链接
中国县区碳排放数据1997-2017年2735县区,根据2010年中国区划 环境、能源 https://aistudio.baidu.com/aistudio/datasetdetail/121687 - 10 2000-2018年各省能源消费和碳排放数据
简介:2000-2018年各省能源消费和碳排放数据
名称 标签 数据集链接
2000-2018年各省能源消费和碳排放数据 环境、能源 https://aistudio.baidu.com/aistudio/datasetdetail/121689 - 11 2020年31省份日二氧化碳排放量
简介:2020年31省份日二氧化碳排放量
名称 标签 数据集链接
2020年31省份日二氧化碳排放量 环境、能源 https://aistudio.baidu.com/aistudio/datasetdetail/121692 - 12 太阳能电池板日发电量
简介:此数据集描述了每天记录用电量的习惯的人,要记录太阳能电池板的发电量。正在尝试预测下一个1000kWh的生产日期。
名称 标签 数据集链接
太阳能电池板日发电量 lstm、可再生能源、回归 https://aistudio.baidu.com/aistudio/datasetdetail/108081
四、机器学习在新能源领域的应用 AI+能源
- 气象预测
文献
Machine learning methods for solar radiation forecasting: A review
Predicting solar generation from weather forecasts using machine learning
A Deep Physical Model for Solar Irradiance Forecasting with Fisheye Images - 系统性能预测
文献
Solar power generation forecasting using ensemble approach based on deep learning and statistical methods
Predicting Dynamic Stability of Power Grids using Graph Neural Networks
应用领域
光伏电站发电量预测
系统稳定性预测 - 系统优化
文献
Machine Learning Applications for Data Center Optimization
应用领域
数据中心能耗优化
新能源+储能调度优化 - 预测维护
文献
Machine learning methods for wind turbine condition monitoring: A review
Machine-learning techniques used to accurately predict battery life
应用领域
关键设备状态监测、故障预测
电池寿命预测
Python数据分析案例24——基于深度学习的锂电池寿命预测
Datawhale学习笔记AI +新能源:电动汽车充电站充电量预测2
五、补充
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!