【能源数据分析-00】能源领域数据集集锦(动态更新)

一、前言

大数据科学在能源领域的深度应用,已经深刻改变了这一行业的垂直格局。它为我们提供了宝贵的见解,帮助降低下游市场的成本,使石油生产商能够更好地应对市场繁荣期的需求。近期,石油价格的剧烈下跌给全球经济带来了沉重打击,而价格的频繁波动以及能源项目的高昂成本,使得高质量的信息变得至关重要。如今,随着组织开始利用流数据技术来提升能源效率,大数据已经成为实现这一目标的关键工具。例如,某大型大学就通过监控和分析其能源使用的流数据,结合天气数据,实现了对能源利用和生产的实时优化调整。

在能源领域,数据科学被广泛应用于成本控制、风险管理和投资决策优化等方面。特别是成本控制,已成为能源行业中数据科学应用的一大亮点。在投资决策的优化方面,数据科学不仅有助于投资者做出更明智的选择,还能更有效地调配内部资源。此外,通过提供更为精细的监管和监控手段,数据科学也在提升公共安全方面发挥了重要作用。

能源大数据能够融合电力、石油、煤炭等能源领域的数据,以及人口、地理、气象等多方面的信息,进行综合采集、处理、分析与应用。发展能源大数据不仅有助于推动能源产业的快速发展,还能促进商业模式的创新。随着能源行业科技化、信息化水平的不断提升,以及各类监测设备和智能传感器的广泛应用,大量关于石油、煤炭、太阳能、风能等的数据信息得以产生和存储,这为构建实时、准确、高效的综合能源管理系统提供了坚实的数据基础,使得能源大数据能够充分发挥其应有的作用。

二、数据集目录

  • 英国燃油价格
  • 变压器油温预测
  • 印度每日发电量
  • 国际能源统计
  • 太阳能发电数据
  • LANL_特征
  • 中国八大碳市场价格行情数据2013年6月-2021年3月
  • 中国地级市碳排放数据1997-2017年353地级市
  • 中国县区碳排放数据1997-2017年2735县区,根据2010年中国区划
  • 2000-2018年各省能源消费和碳排放数据
  • 2020年31省份日二氧化碳排放量
  • 太阳能电池板日发电量

三、数据集详情

  • 1 英国燃油价格
    简介:英国燃油价格,每周统计数据
    名称 标签 数据集链接
    英国燃油价格 推荐系统、数据分析、能源 https://aistudio.baidu.com/aistudio/datasetdetail/116210

  • 2 变压器油温预测
    简介:数学建模“变压器油温预测
    名称 标签 数据集链接
    变压器油温预测 预测 https://aistudio.baidu.com/aistudio/datasetdetail/106143

  • 3 印度每日发电量
    简介:研究印度的日常能源发电
    名称 标签 数据集链接
    印度每日发电量 能源,回归 https://aistudio.baidu.com/aistudio/datasetdetail/106610

  • 4 国际能源统计
    简介:本数据集包含1990-2014年全球能源贸易与生产数据
    名称 标签 数据集链接
    国际能源统计 经济学、能源、机器学习 https://aistudio.baidu.com/aistudio/datasetdetail/106551

  • 5 太阳能发电数据
    简介:数据集来自两个电厂的太阳能发电数据和传感器数据。
    名称 标签 数据集链接
    太阳能发电数据 机器学习、能源 https://aistudio.baidu.com/aistudio/datasetdetail/106646

  • 6 LANL_特征
    简介:此数据集包含了从LANL竞争数据中提取的特征,其中有来自内核和训练目标变量的所有987个训练和测试数据特征。
    名称 标签 数据集链接
    LANL_特征 表格数据、生成 https://aistudio.baidu.com/aistudio/datasetdetail/106697

  • 7 中国八大碳市场价格行情数据2013年6月-2021年3月
    简介:中国八大碳市场价格行情数据2013年6月-2021年3月,可以进行碳交易量及价格预测和各个区域市场需求预测。
    名称 标签 数据集链接
    中国八大碳市场价格行情数据2013年6月-2021年3月 环境、能源 https://aistudio.baidu.com/aistudio/datasetdetail/121682

  • 8 中国地级市碳排放数据1997-2017年353地级市
    简介:排放清单根据中国统计局最新能源数据修订版(2015年)编制。请注意:由于方法的不同,采用表观排放量核算法和部门法得出的结果有时略有不同,城市碳排放量通过所辖县排放量求得。
    名称 标签 数据集链接
    中国地级市碳排放数据1997-2017年353地级市 环境、能源 https://aistudio.baidu.com/aistudio/datasetdetail/121686

  • 9 中国县区碳排放数据1997-2017年2735县区,根据2010年中国区划
    简介:排放清单根据中国统计局最新能源数据修订版(2015年)编制。请注意:由于方法的不同,采用表观排放量核算法和部门法得出的结果有时略有不同。
    名称 标签 数据集链接
    中国县区碳排放数据1997-2017年2735县区,根据2010年中国区划 环境、能源 https://aistudio.baidu.com/aistudio/datasetdetail/121687

  • 10 2000-2018年各省能源消费和碳排放数据
    简介:2000-2018年各省能源消费和碳排放数据
    名称 标签 数据集链接
    2000-2018年各省能源消费和碳排放数据 环境、能源 https://aistudio.baidu.com/aistudio/datasetdetail/121689

  • 11 2020年31省份日二氧化碳排放量
    简介:2020年31省份日二氧化碳排放量
    名称 标签 数据集链接
    2020年31省份日二氧化碳排放量 环境、能源 https://aistudio.baidu.com/aistudio/datasetdetail/121692

  • 12 太阳能电池板日发电量
    简介:此数据集描述了每天记录用电量的习惯的人,要记录太阳能电池板的发电量。正在尝试预测下一个1000kWh的生产日期。
    名称 标签 数据集链接
    太阳能电池板日发电量 lstm、可再生能源、回归 https://aistudio.baidu.com/aistudio/datasetdetail/108081

四、机器学习在新能源领域的应用 AI+能源

  • 气象预测
    文献
    Machine learning methods for solar radiation forecasting: A review
    Predicting solar generation from weather forecasts using machine learning
    A Deep Physical Model for Solar Irradiance Forecasting with Fisheye Images

  • 系统性能预测
    文献
    Solar power generation forecasting using ensemble approach based on deep learning and statistical methods
    Predicting Dynamic Stability of Power Grids using Graph Neural Networks
    应用领域
    光伏电站发电量预测
    系统稳定性预测

  • 系统优化
    文献
    Machine Learning Applications for Data Center Optimization
    应用领域
    数据中心能耗优化
    新能源+储能调度优化

  • 预测维护
    文献
    Machine learning methods for wind turbine condition monitoring: A review
    Machine-learning techniques used to accurately predict battery life
    应用领域
    关键设备状态监测、故障预测
    电池寿命预测
    Python数据分析案例24——基于深度学习的锂电池寿命预测
    Datawhale学习笔记AI +新能源:电动汽车充电站充电量预测2

五、补充

后续将会继续补充本文内容,包括数据集,数据集介绍和相关案列;

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云天徽上

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值