给定一个整数数组 nums,求出数组从索引 i 到 j(i ≤ j)范围内元素的总和,包含 i、j 两点。
实现 NumArray 类:
- NumArray(int[] nums) 使用数组 nums 初始化对象
- int sumRange(int i, int j) 返回数组 nums 从索引 i 到 j(i ≤ j)范围内元素的总和,包含 i、j两点(也就是 sum(nums[i], nums[i + 1], … , nums[j]))
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/range-sum-query-immutable
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
/**
* Your NumArray object will be instantiated and called as such:
* NumArray obj = new NumArray(nums);
* int param_1 = obj.sumRange(i,j);
*/
蛮力
class NumArray {
int[] nums;
public NumArray(int[] nums) {
this.nums=nums;
}
public int sumRange(int i, int j) {
int sum=0;
for(int k=i;k<=j;k++)sum+=nums[k];
return sum;
}
}
public int sumRange(int i, int j)
的时间复杂度为O(n)。
从题意来说,NumArray对象会被创建一次,但是求和会进行多次。也就是public NumArray(int[] nums)
被调用一次,public int sumRange(int i, int j)
被调用多次,所以应该尽可能地使public int sumRange(int i, int j)
的资源消耗减少。所以针对这点可以进行一定的优化。
优化思路:在public NumArray(int[] nums)
中直接算出结果并保存至二维数组,下面public NumArray(int[] nums)
的时间复杂度为O(n3),则最大执行次数为1012,过高。
class NumArray {
int[][] sum;
public NumArray(int[] nums) {
int size= nums.length,sumij=0;
int[][] sum = new int[size][size];
for(int i=0;i<size;i++){
for(int j=i;j<size;j++){
for(int k=i;k<=j;k++){
sumij+=nums[k];
}
sum[i][j]=sumij;
sumij=0;
}
}
this.sum=sum;
}
public int sumRange(int i, int j) {
return sum[i][j];
}
}
对上面三层for优化,第三层可以简化,则下面public NumArray(int[] nums)
的时间复杂度为O(n2),则最大执行次数为108,过高。
class NumArray {
int[][] sum;
public NumArray(int[] nums) {
int size= nums.length,sumij=0;
int[][] sum = new int[size][size];
for(int i=0;i<size;i++){
sum[i][i]=nums[i];
for(int j=i+1;j<size;j++){
sum[i][j]=sum[i][j-1]+nums[j];
}
}
this.sum=sum;
}
public int sumRange(int i, int j) {
return sum[i][j];
}
}
前缀和
因为2层for执行次数依然较高,所以要考虑1层for。
实际上下面的并非真正的前缀和,但是和前缀和相似。preSum[i]
存储nums[0]到nums[i]的值,包括两端,只需要nums.length
个存储位置即可。那么数组 nums 从索引 i 到 j(i ≤ j)范围内元素的总和为preSum[j]-preSum[i-1]
,不过public int sumRange(int i, int j)
中需要对当i==0
时进行判断防止越界。
class NumArray {
int[] preSum;
public NumArray(int[] nums) {
int size= nums.length;
for(int i=1;i<size;i++){
nums[i]=nums[i-1]+nums[i];
}
preSum=nums;
}
public int sumRange(int i, int j) {
return preSum[j]-(i==0?0:preSum[i-1]);
}
}
真正的前缀和,因为上述public int sumRange(int i, int j)
的一次判断多次调用也会影响效率,preSum[i]
存储nums[0]到nums[i]的值,不包括右端的值,那么数组 nums 从索引 i 到 j(i ≤ j)范围内元素的总和为preSum[j+1]-preSum[i]
,不过就是preSum
的大小为nums.length+1
。
class NumArray {
int[] preSum;
public NumArray(int[] nums) {
int size= nums.length;
int[] preSum = new int[size+1];
preSum[0]=0;
for(int i=1;i<size+1;i++){
preSum[i]=preSum[i-1]+nums[i-1];
}
this.preSum=preSum;
}
public int sumRange(int i, int j) {
return preSum[j+1]-preSum[i];
}
}
优化到后面已经体现出了动态规划的思想。