【概率论与数理统计】第二章 随机变量及其分布(2)

第二章 随机变量及其分布

2 随机变量的分布函数

2.1 分布函数的概念

对于非离散型得随机变量就无法用分布律来描述它了。

首先,我们不能将其所有可能的取值一一地列举出来,如连续型随机变量的取值可充满数轴的一个区间 ( a , b ) (a,b) (a,b),甚至是 n n n个区间,也可以是无穷区间;其次,对于连续型随机变量 X X X,任取一指定实数值 x x x的概率是0,即 P { X = x } = 0 P\{X=x\}=0 P{X=x}=0

我解释下,因为连续型随机变量 X X X的取值在某个或很多个区间内,那取值的个数就是无限个,在无限个可能中 x x x仅仅是其中一个,因此,仅仅这一个取值对应的概率就是0。

于是,如何刻画一般的随机变量的统计规律就成了我们的首要问题。

在实际应用中,如测量某物理量的误差 ξ \xi ξ,测量灯泡寿命 τ \tau τ等这样的随机变量,我们并不会对误差或寿命的某一特定值的概率感兴趣,而是考虑误差落在某个区间的概率,寿命大于某个数的概率之类的。

对于随机变量 X X X,我们关心诸如事件 { X ≤ x } ,   { X > x } ,   { x 1 < X ≤ x 2 } \{X \le x\},\ \{X \gt x\},\ \{x_1 \lt X \le x_2\} {Xx}, {X>x}, {x1<Xx2}等的概率,但是由于 x 1 ≤ x 2 x_1 \le x_2 x1x2,且 { X ≤ x 1 } ⊂ { X ≤ x 2 } \{X \le x_1\} \subset \{X \le x_2\} {Xx1}{Xx2};所以: { x 1 < X ≤ x 2 } = { X ≤ x 2 } − { X ≤ x 1 } \{x_1 \lt X \le x_2\} = \{X \le x_2\} - \{X \le x_1\} {x1<Xx2}={Xx2}{Xx1}

又因 { X > x } \{X \gt x\} {X>x}的对立事件为 { X ≤ x } \{X \le x\} {Xx},所以: P { X > x } = 1 − P { X ≤ x } P\{X \gt x\} = 1 - P\{X \le x\} P{X>x}=1P{Xx}

因此, { X ≤ x } \{X \le x\} {Xx}的概率 P { X ≤ x } P\{X \le x\} P{Xx}成了关键的角色,我们记 F ( x ) = P { X ≤ x } F(x) = P\{X \le x\} F(x)=P{Xx},任意给定的 x ∈ ( − ∞ , + ∞ ) x \in (-\infty,+\infty) x(,+),对应的 F ( x ) F(x) F(x)是一个概率。 P { X ≤ x } ∈ [ 0 , 1 ] P\{X \le x\} \in [0,1] P{Xx}[0,1],说明 F ( x ) F(x) F(x)是定义在 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上的普通实值函数,从而引出随机变量分布函数的定义。

解释下,上面任何不等式中 ≤ 和 < \le和\lt < ≥ 和 > \ge和\gt >是分别等价的;因为 = = =对应值的概率是0,所以有没有 = = =并不影响计算结果。

定义7: X X X为随机变量,称函数 F ( x ) = P { X ≤ x } ,    x ∈ ( − ∞ , + ∞ ) F(x)=P\{X \le x\},\ \ x \in (-\infty,+\infty) F(x)=P{Xx},  x(,+) X X X分布函数

注意:随机变量的分布函数定义适用于任意随机变量,包括离散型随机变量;因此,离散型随机变量既有分布律又有分布函数

X X X为离散型随机变量时,设 X X X的分布律为: p k = P { X = k } ,    k = 0 , 1 , 2 , . . . p_k = P\{X=k\},\ \ k=0,1,2,... pk=P{X=k},  k=0,1,2,...

由于 { X ≤ x } = ∪ x k ≤ x { X = x k } \{X \le x\} = \cup_{x_k \le x} \{X = x_k\} {Xx}=xkx{X=xk},由概率性质知: F ( x ) = P { X ≤ x } = ∑ x k ≤ x { X = x k } = ∑ x k ≤ x p k F(x) = P\{X \le x\} = \sum_{x_k \le x} \{X = x_k\} = \sum_{x_k \le x} p_k F(x)=P{Xx}=xkx{X=xk}=xkxpk即: F ( x ) = ∑ x k ≤ x p k F(x) = \sum_{x_k \le x} p_k F(x)=xkxpk

这是在微观上将连续型的取值看作时更小颗粒度的离散装的取值,从而得出的结论。底层逻辑是:为什么连续?因为颗粒度足够小。

例1:离散型随机变量 X X X的分布律为:

X-1012
P0.20.10.30.4

X X X的分布函数。

解:当 x < − 1 x \lt -1 x<1 F ( x ) = P { X ≤ x } = 0 F(x) = P\{X \le x\} = 0 F(x)=P{Xx}=0

− 1 ≤ x < 0 -1 \le x \lt 0 1x<0 F ( x ) = P { X ≤ x } = P { X = − 1 } = 0.2 F(x) = P\{X \le x\} = P\{X = -1\} = 0.2 F(x)=P{Xx}=P{X=1}=0.2

0 ≤ x < 1 0 \le x \lt 1 0x<1 F ( x ) = P { X ≤ x } = P { X = − 1 } + P { X = 0 } = 0.2 + 0.1 = 0.3 F(x) = P\{X \le x\} = P\{X = -1\} + P\{X=0\} = 0.2+0.1 = 0.3 F(x)=P{Xx}=P{X=1}+P{X=0}=0.2+0.1=0.3

1 ≤ x < 2 1 \le x \lt 2 1x<2 F ( x ) = P { X ≤ x } = P { X = − 1 } + P { X = 0 } + P { X = 1 } = 0.2 + 0.1 + 0.3 = 0.6 F(x) = P\{X \le x\} = P\{X = -1\} + P\{X=0\} + P\{X=1\} = 0.2 + 0.1 + 0.3 = 0.6 F(x)=P{Xx}=P{X=1}+P{X=0}+P{X=1}=0.2+0.1+0.3=0.6

x ≥ 2 x \ge 2 x2 F ( x ) = P { X ≤ x } = P { X = − 1 } + P { X = 0 } + P { X = 1 } + P { X = 2 } = 0.2 + 0.1 + 0.3 + 0.4 = 1 F(x) = P\{X \le x\} = P\{X = -1\} + P\{X=0\} + P\{X=1\} + P\{X=2\} = 0.2+0.1+0.3+0.4=1 F(x)=P{Xx}=P{X=1}+P{X=0}+P{X=1}+P{X=2}=0.2+0.1+0.3+0.4=1

特别注意,看清 F ( x ) F(x) F(x)作为分布函数的定义;无论何时它都代表 X ≤ x X \le x Xx的概率,只不过 x x x是由定义域的变量而已。

还需要注意,对于离散型随机变量的分布函数要特别关注取值边界,特别关注 = = =敌营的取值是否被包含。

因此, X X X的分布函数为:
F ( x ) = { 0 , x < 1 0.2 , − 1 ≤ x < 0 0.3 , 0 ≤ x < 1 0.6 , 1 ≤ x < 2 1 , x ≥ 2 F(x)= \begin{cases} 0, &x\lt 1 \\ 0.2, &-1 \le x \lt 0 \\ 0.3, &0 \le x \lt 1 \\ 0.6, &1 \le x \lt 2 \\ 1, &x \ge 2 \end{cases} F(x)= 0,0.2,0.3,0.6,1,x<11x<00x<11x<2x2
其图像为:

在这里插入图片描述

2.2 分布函数的性质

0 ≤ F ( x ) ≤ 1 0 \le F(x) \le 1 0F(x)1

F ( x ) F(x) F(x)不是减函数,即对于任意 x 1 < x 2 x_1 \lt x_2 x1<x2都有 F ( x 1 ) ≤ F ( x 2 ) F(x_1) \le F(x_2) F(x1)F(x2)

F ( − ∞ ) = 0 ,   F ( + ∞ ) = 1 F(-\infty) = 0,\ F(+\infty) = 1 F()=0, F(+)=1 lim ⁡ x → − ∞ F ( x ) = 0 ,   lim ⁡ x → − ∞ F ( x ) = 1 \lim_{x \to -\infty} F(x) = 0,\ \lim_{x \to -\infty} F(x) = 1 limxF(x)=0, limxF(x)=1

F ( x ) F(x) F(x)右连续,即 lim ⁡ Δ x → 0 + F ( x + Δ x ) = F ( x ) \lim_{\Delta{x} \to 0^+} F(x + \Delta{x}) = F(x) limΔx0+F(x+Δx)=F(x)

例2:设随机变量 X X X的分布函数为:
F ( x ) = { a + b e − λ x , x > 0 0 , x ≤ 0 F(x)= \begin{cases} a + be^{-\lambda x}, & x>0 \\ 0, & x\le 0 \end{cases} F(x)={a+beλx,0,x>0x0
其中, λ > 0 \lambda \gt 0 λ>0为常数,求常数 a a a b b b的值。

解:由题意有: F ( + ∞ ) = lim ⁡ x → + ∞ F ( x ) = lim ⁡ x → + ∞ ( a + b e − λ x ) = a F(+\infty) =\lim_{x \to +\infty} F(x) = \lim_{x \to +\infty} (a + be^{-\lambda x}) = a F(+)=limx+F(x)=limx+(a+beλx)=a

由分布函数性质 F ( + ∞ ) = 1 F(+\infty) = 1 F(+)=1 a = 1 a = 1 a=1

F ( x ) F(x) F(x)的右连接性得: F ( 0 + 0 ) = lim ⁡ Δ x → 0 + F ( x ) = lim ⁡ Δ x → 0 ( a + b e − λ 0 ) = a + b = 0 F(0+0) = \lim_{\Delta x \to 0^+} F(x) = \lim_{\Delta x \to 0} (a + be^{-\lambda 0}) = a + b = 0 F(0+0)=limΔx0+F(x)=limΔx0(a+beλ0)=a+b=0 # 从x=0左侧不断逼近0出的极限值与x=0处的值相同(不中断)!

所以: b = − 1 b = -1 b=1

因此: a = 1 ,   b = − 1 a = 1,\ b = -1 a=1, b=1

补充下数学知识:自然常数,符号 e e e,为数学中一个常数,是一个无限不循环小数,且为超越数,其值约为2.718281828459045。它是自然对数函数的底数。有时称它为欧拉数,以瑞士数学家欧拉命名。

e e e作为数学常数,它的其中一个定义是: e = lim ⁡ x → ∞ ( 1 + 1 x ) x e = \lim_{x \to \infty}(1 + \frac{1}{x})^x e=limx(1+x1)x

同时: e = ∑ n = 0 ∞ 1 n ! = 1 0 ! + 1 1 ! + 1 2 ! + 1 3 ! + . . . e = \sum_{n=0}^{\infty} \frac{1}{n!} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + ... e=n=0n!1=0!1+1!1+2!1+3!1+...。 注意: 0 ! = 1 ,   1 ! = 1 0! = 1,\ 1! =1 0!=1, 1!=1

在已知 X X X的分布函数 F ( x ) F(x) F(x)情况下,我们可知以下重要事件的概率:

P { X ≤ b } = F ( b ) P\{X \le b\} = F(b) P{Xb}=F(b)

P { a < X ≤ b } = F ( b ) − F ( a ) P\{a \lt X \le b\} = F(b) - F(a) P{a<Xb}=F(b)F(a)

P { X > b } = 1 − P { X ≤ b } = 1 − F ( b ) P\{X \gt b\} = 1 - P\{X \le b\} = 1- F(b) P{X>b}=1P{Xb}=1F(b)

例3:设随机变量 X X X的分布函数为:
F ( x ) = { 0 , x < 0 x 3 , 0 ≤ x < 1 x 2 , 1 ≤ x < 2 1 , x ≥ 2 F(x) = \begin{cases} 0, & x \lt 0 \\ \frac{x}{3}, & 0 \le x \lt 1 \\ \frac{x}{2}, & 1 \le x \lt 2 \\ 1, & x \ge 2 \end{cases} F(x)= 0,3x,2x,1,x<00x<11x<2x2
求:(1) P { 1 2 < X ≤ 3 2 } P\{\frac{1}{2} \lt X \le \frac{3}{2}\} P{21<X23} (2) P { X > 1 2 } P\{ X \gt \frac{1}{2}\} P{X>21} (3) P { X > 3 2 } P\{ X \gt \frac{3}{2}\} P{X>23}

解:(1) P { 1 2 < x ≤ 3 2 } = F ( 3 2 ) − F ( 1 2 ) = 3 4 − 1 6 = 7 12 P\{\frac{1}{2} \lt x \le \frac{3}{2}\} = F(\frac{3}{2}) - F(\frac{1}{2}) = \frac{3}{4} - \frac{1}{6} = \frac{7}{12} P{21<x23}=F(23)F(21)=4361=127

(2) P { X > 1 2 } = 1 − F ( 1 2 ) = 1 − 1 6 = 5 6 P\{X \gt \frac{1}{2}\} = 1 - F(\frac{1}{2}) = 1 - \frac{1}{6} = \frac{5}{6} P{X>21}=1F(21)=161=65

(3) P { X > 3 2 } = 1 − F ( 3 2 ) = 1 − 3 4 = 1 4 P\{X \gt \frac{3}{2}\} = 1 - F(\frac{3}{2}) = 1 - \frac{3}{4} = \frac{1}{4} P{X>23}=1F(23)=143=41

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Arthur古德曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值