书生·浦语实战营第三期基础部分(OpenCompass 评测 InternLM-1.8B 实践)
任务要求:
使用 OpenCompass 评测 internlm2-chat-1.8b 模型在 ceval 数据集上的性能,记录复现过程并截图。
OpenCompass
在 OpenCompass 中评估一个模型通常包括以下几个阶段:配置
-> 推理
-> 评估
-> 可视化
。
配置
:这是整个工作流的起点。您需要配置整个评估过程,选择要评估的模型和数据集。此外,还可以选择评估策略、计算后端等,并定义显示结果的方式。
推理与评估
:在这个阶段,OpenCompass 将会开始对模型和数据集进行并行推理和评估。推理阶段主要是让模型从数据集产生输出,而评估阶段则是衡量这些输出与标准答案的匹配程度。这两个过程会被拆分为多个同时运行的“任务”以提高效率。
可视化
:评估完成后,OpenCompass 将结果整理成易读的表格,并将其保存为 CSV 和 TXT 文件。
实践测评结果
python run.py --datasets ceval_gen --models hf_internlm2_chat_1_8b --debug
项目参考:
[1https://github.com/InternLM/Tutorial/blob/camp3/docs/L1/OpenCompass