一.题目
给定一个范围在 1 ≤ a[i] ≤ n ( n = 数组大小 ) 的 整型数组,数组中的元素一些出现了两次,另一些只出现一次。
找到所有在 [1, n] 范围之间没有出现在数组中的数字。
您能在不使用额外空间且时间复杂度为O(n)的情况下完成这个任务吗? 你可以假定返回的数组不算在额外空间内。
示例:
输入:
[4,3,2,7,8,2,3,1]
输出:
[5,6]
二.代码(C)
方法一
/**
* Note: The returned array must be malloced, assume caller calls free().
*/
int* findDisappearedNumbers(int* nums, int numsSize, int* returnSize)
{
static int a[200000];
memset(a,0,200000);
returnSize[0] = 0;
int i;
for(i=0;i<numsSize;i++)
{
//printf("asd");
nums[(nums[i]-1)%numsSize] += numsSize;
}
//printf("asd");
for(i=0;i<numsSize;i++)
{
printf("%d",nums[i]);
if(nums[i]<=numsSize)
a[returnSize[0]++] = i+1;
}
printf("\n%d",returnSize[0]);
return a;
}
方法二
/**
* Note: The returned array must be malloced, assume caller calls free().
*/
int* findDisappearedNumbers(int* nums, int numsSize, int* returnSize)
{
int i,temp;
*returnSize = 0;
for(i=0;i<numsSize;i++)
{
if(nums[i]<0)
temp = -nums[i];
else
temp = nums[i];
nums[temp-1] = nums[temp-1]*(nums[temp-1]>0?-1:1);
}
for(i=0;i<numsSize;i++)
{
if(nums[i]>0)
nums[(*returnSize)++] = i+1;
}
return nums;
}
三.提交记录
方法一
方法二
四.备注
方法一:第一次遍历数组,将数组中每一个元素位置的元素加一个数组长度,遍历完成后,数组中所有元素值小于数组长度的位置都是未出现的数字。
方法二在方法一的基础上,把加法操作改成求反操作。