疫情控制(blockade)

2 篇文章 0 订阅
2 篇文章 0 订阅
这是一道关于树形结构的算法问题,目标是安排军队在树状图中移动,确保每个叶节点的路径上至少有一个军队。通过二分搜索判断在限定时间内能否实现,并采用贪心策略进行优化。问题中军队不能停留在根节点,需要通过DFS或倍增算法寻找解决方案。
摘要由CSDN通过智能技术生成

来源:noip2012day2T3
题意:有一棵以1为根有n个点的树,走过一条边的时间是那条边的长度。在这n个点中有m个点上有军队,他们可以随便走,最后在一个节点停下。求至少要多少时间,使得根节点到达每个叶节点的路上都至少有一个军队。注意,军队不能停在根节点。

分析:
首先所有点肯定都是尽可能往上走为先。

然后因为直接处理感觉很麻烦,这里考虑二分来。二分时间,然后就变成了判定的问题了。

那么点被分为两类,一种是可以走到根节点还有剩余的,一种是走不到的。
可以发现走不到的话 就尽可能往上走。然后停在尽可能上面。
然后走到根节点还有剩余的时间的,就往一些第二层节点走(因为不能在根节点上堵)
首先先把所有点往上走,分成两类。对于走不到的直接堵上。
然后跑一边dfs求出哪些第二层子树里的叶子节点没有堵上。
然后考虑这些能跑到根节点的怎么去堵第二层的点。

对于每个都有两种选择,停在从哪里来的。或者去堵另外一个点。
贪心。

直接跳

#include<bits/stdc++.h>
#define pb push_back
#define pll pair<long long,long long>
#define mp make_pair
#define A first
#define B second
#define ll long long
#define M 50005
using namespace std;

void read(int &x){
    x=0; char c=getchar();
    for (; c<'0'; c=getchar());
    for (; c>='0'; c=getchar())x=(x<<3)+(x<<1)+(c^'0');  
}


int id[M],n,m,fa[M],xx[M];
ll d[M];
vector< pll >e[M];
bool can[M];

void dfs(int f,int x){
    fa[x]=f; int i;
    for (i=0; i<e[x].size(); i++)if (e[x][i].A!=f)d[e[x][i].A]=e[x][i].B,dfs(x,e[x][i].A);   
}

void dfs1(int f,int x){
    int i;
    bool flag=1; can[x]=0;
    for (i=0; i<e[x].size(); i++)if (e[x][i].A!=f){
        flag=0; if (can[e[x][i].A])dfs1(x,e[x][i].A);
        can[x]|=(can[e[x][i].A]);
    }
    if (!can[x])can[x]=flag;
}
pll q[M],p[M];

bool cmp(pll a,pll b){
    return a.A>b.A;  
}

bool used[M];

bool ch(ll tim){
    memset(can,1,sizeof(can));
    memset(id,0,sizeof(id));
    int i,j,cnt=0,num=0,last;
    for (i=1; i<=m; i++){
        int x=last=xx[i]; ll t=tim; 
        for (; t>=d[x]&&x!=1; x=fa[x]){
            last=x;
            t=t-d[x];
        }
        if (x==1)q[++cnt]=mp(t,last);
        else can[x]=0;
    }
    dfs1(0,1);
    if (!can[1])return 1;
    sort(q+1,q+cnt+1,cmp);
    for (i=0; i<e[1].size(); i++)if (can[e[1][i].A])p[++num]=mp(e[1][i].B,e[1][i].A);
    sort(p+1,p+num+1,cmp);
    for (i=1; i<=cnt; i++){
        if (can[q[i].B])id[q[i].B]=i;   
    }
    memset(used,0,sizeof(used));
    for (i=1,j=1; i<=num; i++){
        if (id[p[i].B]&&!used[id[p[i].B]]){used[id[p[i].B]]=1; can[p[i].B]=0;continue;}
        for (; (used[j]||q[j].A<p[i].A)&&j<=cnt; j++);
        if (j>cnt)return 0;
        can[p[i].B]=0;
        used[j]=1;    
    }
    dfs1(0,1);
    return (!can[1]);
}


int main(){
    read(n); 
    int i,x,y,w;
    ll l=0,r=0,res;
    for (i=1; i<n; i++){
        read(x); read(y); read(w); r=r+w;
        e[x].pb(mp(y,w));
        e[y].pb(mp(x,w));      
    }
    res=0;
    read(m);
    for (i=1; i<=m; i++)read(xx[i]);
    dfs(0,1);
    for (; l<=r; ){
        ll mid=(l+r)>>1;
        if (ch(mid))res=mid,r=mid-1;
        else l=mid+1;      
    }
    printf("%lld\n",res);
    return 0;
}

倍增

#include<bits/stdc++.h>
#define pb push_back
#define pll pair<long long,long long>
#define mp make_pair
#define A first
#define B second
#define ll long long
#define M 50005
using namespace std;

void read(int &x){
    x=0; char c=getchar();
    for (; c<'0'; c=getchar());
    for (; c>='0'; c=getchar())x=(x<<3)+(x<<1)+(c^'0');  
}


int id[M],n,m,xx[M];
ll d[M][16],fa[M][16];
vector< pll >e[M];
bool can[M];

void dfs(int f,int x){
    fa[x][0]=f;
    int i;
    for (i=0; i<e[x].size(); i++)if (e[x][i].A!=f)d[e[x][i].A][0]=e[x][i].B,dfs(x,e[x][i].A);   
}

void dfs1(int f,int x){
    int i;
    bool flag=1; can[x]=0;
    for (i=0; i<e[x].size(); i++)if (e[x][i].A!=f){
        flag=0; if (can[e[x][i].A])dfs1(x,e[x][i].A);
        can[x]|=(can[e[x][i].A]);
    }
    if (!can[x])can[x]=flag;
}
pll q[M],p[M];

bool cmp(pll a,pll b){
    return a.A>b.A;  
}

bool used[M];

bool ch(ll tim){
    memset(can,1,sizeof(can));
    memset(id,0,sizeof(id));
    int i,j,cnt=0,num=0,last;
    for (i=1; i<=m; i++){
        int x=xx[i],k; ll t=tim; 
        for (k=15; k>=0; k--)if (fa[x][k]!=1&&d[x][k]<=t){
            t-=d[x][k];
            x=fa[x][k];      
        }

        if (fa[x][0]==1&&d[x][0]<=t)q[++cnt]=mp(t-d[x][0],x);
        else can[x]=0;
    }
    dfs1(0,1);
    if (!can[1])return 1;
    sort(q+1,q+cnt+1,cmp);
    for (i=0; i<e[1].size(); i++)if (can[e[1][i].A])p[++num]=mp(e[1][i].B,e[1][i].A);
    sort(p+1,p+num+1,cmp);
    for (i=1; i<=cnt; i++){
        if (can[q[i].B])id[q[i].B]=i;
    }
    memset(used,0,sizeof(used));
    for (i=1,j=1; i<=num; i++){
        if (id[p[i].B]&&!used[id[p[i].B]]){used[id[p[i].B]]=1; can[p[i].B]=0;continue;}
        for (; (used[j]||q[j].A<p[i].A)&&j<=cnt; j++);
        if (j>cnt)return 0;
        can[p[i].B]=0;
        used[j]=1;    
    }
    dfs1(0,1);
    return (!can[1]);
}


int main(){
    read(n); 
    int i,x,y,w;
    ll l=0,r=0,res;
    for (i=1; i<n; i++){
        read(x); read(y); read(w); r=r+w;
        e[x].pb(mp(y,w));
        e[y].pb(mp(x,w));      
    }
    res=0;
    read(m);
    for (i=1; i<=m; i++)read(xx[i]);
    dfs(0,1); fa[1][0]=1;
    int k;
    for (k=1; k<16; k++){
        for (i=1; i<=n; i++){
            fa[i][k]=fa[fa[i][k-1]][k-1];
            d[i][k]=d[i][k-1]+d[fa[i][k-1]][k-1];          
        }      
    }


    for (; l<=r; ){
        ll mid=(l+r)>>1;
        if (ch(mid))res=mid,r=mid-1;
        else l=mid+1;      
    }
    printf("%lld\n",res);
    return 0;
}

按理来说倍增应该要比直接跳要快但是这边却比直接跳慢。不知道是不是写错了或者别的什么。于是把两个都贴上来了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值