很久很久以前的一天,一位美男子来到海边,海上狂风大作。美男子希望在海中找到美人鱼,但是很不幸他只找到了章鱼怪。
然而,在世界的另一端,人们正在积极的收集怪物的行为信息,以便研制出强大的武器来对付章鱼怪。由于地震的多发,以及恶劣的天气,使得我们的卫星不能很好的定位怪物,从而不能很好的命中目标。第一次射击的分析结果会反映在一张由n个点和m条边组成的无向图上。现在让我们来确定这张图是不是可以被认为是章鱼怪。
为了简单起见,我们假设章鱼怪的形状是这样,他有一个球形的身体,然后有很多触须连接在他的身上。可以表现为一张无向图,在图中可以被认为由三棵或者更多的树(代表触须)组成,这些树的根在图中处在一个环中(这个环代表球形身体)。
题目保证,在图中没有重复的边,也没有自环。
Input
单组测试数据
第一行给出两个数,n表示图中的点的个数,m表示图中边的数量。 (1≤ n≤100,0≤ m≤ n*(n-1)/2 )
接下来m行给出边的信息,
每一行有两上数x,y (1≤ x,y≤ n,x≠y)
表示点x和点y之间有边相连。每一对点最多有一条边相连,点自身不会有边到自己。
Output
共一行,如果给定的图被认为是章鱼怪则输出”FHTAGN!”(没有引号),否则输出”NO”(没有引号)。
Sample Input
6 6
6 3
6 4
5 1
2 5
1 4
5 4
Sample Output
FHTAGN!
解题思路:如果所有边是连通的并且只有一个祖先则判断为FHTAGN!
AC代码:
#include<stdio.h>
int f[1010];
int find(int v)
{
if(f[v]==v) return v;
else
{
f[v]=find(f[v]);
return f[v];
}
}
void merge(int v,int u)
{
int t1=find(v);
int t2=find(u);
if(t1!=t2)
{
f[t2]=t1;
}
return;
}
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
for(int i=1;i<=n;i++)
f[i]=i;
int cnt=0;
for(int i=1;i<=m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
if(find(u)==find(v)) cnt++;
else merge(u,v);
}
int ff=0;
for(int i=1;i<=n;i++)
{
if(f[i]==i) ff++;
}
if(ff==1&&cnt==1) printf("FHTAGN!\n");
else printf("NO\n");
}
return 0;
}