一个正整数 N 的因子中可能存在若干连续的数字。例如 630 可以分解为 3×5×6×7,其中 5、6、7 就是 3 个连续的数字。给定任一正整数 N,要求编写程序求出最长连续因子的个数,并输出最小的连续因子序列。
输入格式:
输入在一行中给出一个正整数 N(1<N<231)。
输出格式:
首先在第 1 行输出最长连续因子的个数;然后在第 2 行中按 因子1*因子2*……*因子k
的格式输出最小的连续因子序列,其中因子按递增顺序输出,1 不算在内。
输入样例:
630
输出样例:
3
5*6*7
解题思路:
这道题想了很久都没有想出来很好的办法(可能是我想多了?)就开始暴力了。
从第一个数开始往后乘,一直乘到 √n。
然后从第二个数往后乘,一直乘到 √n。
......
把所有连续的序列都遍历一遍,如果有符合条件的序列则更新。2^31在12的阶乘到13的阶乘,所以总的序列个数不算很多,没有超时。
AC代码:
#include<stdio.h>
#include<math.h>
typedef long long ll;
int main()
{
ll n;
while(~scanf("%lld",&n))
{
ll first=0,len=0,sum;
for(ll i=2;i<=sqrt(n);i++)
{
sum=1;
for(ll j=i;sum*j<=n;j++)
{
sum*=j;
if(n%sum==0&&j-i+1>len)
{
len=j-i+1;
first=i;
}
}
}
if(first==0)//n是质数
{
first=n;
len=1;
}
printf("%lld\n",len);
printf("%lld",first);
for(ll i=first+1;i<=first+len-1;i++)
{
printf("*%lld",i);
}
printf("\n");
}
return 0;
}