Flink高频面试题之Flink提交(一)

文章详细介绍了Flink的提交方式,包括Local模式、Standalone模式和Yarn模式,并讨论了决定Flink集群规模的因素,如记录大小、状态管理和网络容量。此外,文章强调了Flink在实时监控、报表、流数据分析和实时仓库中的应用,以及Flink作业在Yarn上的交互过程,涉及JobManager、TaskManager的角色和资源分配。
摘要由CSDN通过智能技术生成

#1First of all

面试重点有几下几项:

1.flink提交

2.flink状态编程

3.spark与flink对比

4.flink的checkpoint

5.窗口与水位线

6.flink join

7.flink的反压 

. Flink 提交系列

Flink怎么提交?

Local模式

JobManager TaskManager 共用一个 JVM,只需要jdk支持,单节点运行,主要用来调试。

Standlone模式

Standlone Flink自带的一个分布式集群,它不依赖其他的资源调度框架、不依赖yarn等。充当Master角色的是JobManager。充当Slave/Worker角色是TaskManager

Yarn 模式

 

Flink集群规模?在Flink项目做了什么?

Flink群集大小时要考虑的一些方面:

  1. 记录数和每条记录的大小 每秒到达流式传输框架的预期记录数以及每条记录的大小。不同的记录类型将具有不同的大小,这将最终影响Flink应用程序平稳运行所需的资源。
  2. 不同key的数量和每个键的状态大小。
  3. 状态更新的数量和状态后端的访问模式 Java的堆状态后端上的各种访问模式可能会显着影响群集的大小以及Flink作业所需的资源。
  4. 网络容量 网络容量不仅会受到Flink应用程序本身的影响,还会受到可能正在与之交互的外部服务(如KafkaHDFS)的影响。此类外部服务可能会导致网络出现额外流量。例如,启用replication 可能会在网络的消息brokers之间创建额外的流量。
  5. 磁盘带宽。
  6. 机器数量及其可用CPU和内存。

Flink项目做了什么?

实时监控:

1 用户行为预警,服务器攻击预警 .....

实时报表:

1 活动直播大屏: 11、双12

2 对外数据产品时效性

3 数据化运营

流数据分析:

1 实时计算相关指标反馈及时调整决策

2 内容投放、无线智能推送、实时个性化推荐等

实时仓库:

1 数据实时清洗、归并、结构化

2 数仓的补充和优化

        Flink提交作业的流程,以及与Yarn怎么交互?

  1. 提交App之前,先上传FlinkJar包和配置到HDFS,以便JobManager和TaskManager共享HDFS的数据。
  2. 客户端向ResourceManager提交JobResouceManager接到请求后,先分配container资源,然后通知NodeManager启动ApplicationMaster
  3. ApplicationMaster会加载HDFS的配置,启动对应的JobManager,然后 JobManager会分析当前的作业图,将它转化成执行图(包含了所有可以并发执行的任务),从而知道当前需要的具体资源。
  4. 接着,JobManager会向ResourceManager申请资源,ResouceManager接到请求后,继续分配container资源,然后通知ApplictaionMaster启动更多的TaskManager分配好container资源,再启动TaskManager)。container在启动TaskManager时也会从 HDFS加载数据。
  5. TaskManager启动后,会向JobManager发送心跳包。JobManagerTaskManager分配任务。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值