CVPR 2016 Structural-RNN: Deep Learning on Spatio-Temporal Graphs 论文解读

论文介绍了Structural-RNN模型,它基于时空图来捕捉人体与环境物体间的关联,用于人体运动预测。模型在mocap数据集上的实验表明,它能有效地进行短期预测,并且通过共享因子减少了参数数量,提高了泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文: Structural-RNN: Deep Learning on Spatio-Temporal Graphs

论文地址: https://arxiv.org/pdf/1511.05298.pdf

作者提出一种基于st-graph的RNN混合模型Structural-RNN(S-RNN),该模型特点是捕捉人体与周围环境中物体之间的相关性从而对人物未来的运动对预测。不用于其他模型针对mocap数据集进行学习,S-RNN还适用于对于真实环境下的数据学习,例如视频或图片。这里将重点讨论针对mocap数据集的训练以及效果。


Table of Contents(目录)

Background (论文背景)

Spatio-temporal graph

Factor graph parameterization

Sharing factors

Methodology(实现方法)

Network Structure(模型结构)

Training(训练)

Experiments(实验)

Experiments detail(实验细节)

Experiments results(实验结论)

Summary(总结)


Background (论文背景)

Spatio-temporal graph

st-graph

Spatio-temporal graph是S-RNN模型的基础,它是一种用于描述高层级时空关系结构的工具,图中的结点代表了问题的元素,边代表了它们之间在时间和空间上的联系。如图中人物与两个关键物体。

Factor graph parameterization

为了能将st-graph的特性实际应用在人体运动预测上,作者对其进行了一系列操作:

  1. 首先,如图中(a)是一个基本的st-graph代表了一个活动,由两个物体与一个人物3个结点,6条边组成。其中3条自链接的为时间相关的边,剩下为时间空间相关的边。
  2. 之后,将st-graph沿着时间方向,即时间相关的边横向展开,如图中(b)所示,在时间点t,3个结点之间由spatio-temporal edges所链接。</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值