/*
Name: 二叉排序树相关操作
Author: Unimen
Date: 2011/10/8 13:14:21
*/
/*
删除结点比较麻烦,总结如下:
4大种情况
1、结点p无右孩子:将该点的左孩子变为其在双亲中的同位孩子
1、p为其双亲的左孩子时将其的左孩子变为双亲的左孩子
2、p为其双亲的右孩子时将其的左孩子变为双亲的右孩子
2、结点p无左孩子:将该结点的右孩子变为其在双亲中的同位孩子
1、p为其双亲的左孩子时将其的右孩子变为双亲的左孩子
2、p为其双亲的右孩子时将其的右孩子变为双亲的右孩子
3、节点p既无左孩子也无右孩子:前面的两种处理其实已经包含了这种情况
4、节点p既有左孩子也有右孩子:两种处理办法:后继,前驱
一、后继替换:先找到p的后继此时分两种情况
1、后继s就是p的右孩子(也就说s无左子树),这时用s结点的值替换p结点的值,将s的
右孩子变为p的右孩子
2、后继s是p右孩子的左子树中的最后一个左节点,这时用s结点的值替换p结点的值,将s的
右孩子变为s双亲的左孩子
二、前驱替换:同样先找到p的前驱,这时也有两种情况
1、前驱s就是p的左孩子(也就说s无右子树),这时用s结点的值替换p结点的值,将s的
左孩子变为p的左孩子
2、前驱s是p左孩子的右子树中的最后一个右结点,这时用s结点的值替换p结点的值,将s的
左孩子变为s双亲的右孩子
注:前驱和后继方法差不多,画出图来就一目了然了
*/
#include <iostream>
#include <cassert>
using namespace std;
//数据结构
const int maxn = 10000;
typedef struct node
{
int nData;
struct node *pLChild, *pRChild;
}BST, *PBST;
//插入操作,建树时将用其
void Insert(PBST &pDst, const PBST &pSrc)
{
if (NULL == pDst)
{
pDst = pSrc;
}
else if (pDst->nData < pSrc->nData)
{
Insert(pDst->pRChild, pSrc);
}
else if (pDst->nData > pSrc->nData)
{
Insert(pDst->pLChild, pSrc);
}
else
{
return ;
}
}
//创建 以ctrl+z结束输入
void Create(PBST &root)
{
int nInput;
PBST temp;
root = NULL;
while (cin>>nInput)
{
temp = new BST;
temp->nData = nInput;
temp->pLChild = NULL;
temp->pRChild = NULL;
Insert(root, temp);
}
//使输入流处于正确状态
cin.clear();
char cTemp;
cTemp = cin.get();
}
//中序遍历
void InOrder(PBST root)
{
assert(root);
PBST stack[maxn];
int top = 0;
PBST temp = NULL;
while (root!=NULL || top>0)
{
if (root != NULL)
{
++top;
stack[top] = root;
root = root->pLChild;
}
else
{
temp = stack[top];
--top;
cout<<temp->nData<<" ";
root = temp->pRChild;
}
}
}
//删除特定结点
void Delete(PBST pDelete, PBST pParent)
{
assert (pDelete && pParent);
PBST q = NULL;
PBST s = NULL;
//右子树为空
if (pDelete->pRChild == NULL)
{
if (pParent->pLChild == pDelete) //如果pDelete为pParent的左子树
{
pParent->pLChild = pDelete->pLChild;
}
else
{
pParent->pRChild = pDelete->pLChild; //如果pDelete为pParent的右子树
}
delete pDelete;
}
//左子树为空
else if (pDelete->pLChild == NULL)
{
if (pParent->pLChild == pDelete) //如果pDelete为pParent的左子树
{
pParent->pLChild = pDelete->pRChild;
}
else //如果pDelete为pParent的右子树
{
pParent->pRChild = pDelete->pRChild;
}
delete pDelete;
}
//左右子树都不为空
//前驱方法
else
{
q = pDelete;
s = pDelete->pLChild;
while (s->pRChild)
{
q = s;
s = s->pRChild;
}
pDelete->nData = s->nData;
if (pDelete != q) //第二种情况
{
q->pRChild = s->pLChild;
}
else //第一种情况
{
q->pLChild = s->pLChild;
}
delete s;
}
/*后继方法
else
{
q = pDelete;
s = pDelete->pRChild;
while (s->pLChild)
{
q = s;
s = s->pLChild;
}
pDelete->nData = s->nData;
if (q != pDelete) //第一种情况
{
q->pLChild = s->pRChild;
}
else //第二种情况
{
pDelete->pRChild = s->pRChild;
}
}
*/
}
//查找给定值的结点的指针,pParent返回其双亲结点
void SearchBST(PBST root, PBST &pParent, PBST &pPoint, const int &value)
{
assert(root);
if (root->nData == value)
{
pParent = root;
pPoint = root;
}
else if (root->pLChild!=NULL && root->pLChild->nData==value)
{
pParent = root;
pPoint = root->pLChild;
}
else if (root->pRChild!=NULL && root->pRChild->nData==value)
{
pParent = root;
pPoint = root->pRChild;
}
else if (value < root->nData)
{
SearchBST(root->pLChild, pParent, pPoint, value);
}
else
{
SearchBST(root->pRChild, pParent, pPoint, value);
}
}
int main()
{
PBST root = NULL;
PBST pDelete = NULL;
PBST pParent = NULL;
int value;
cout<<"请输入待排序的数字序列(ctrl+z结束):";
Create(root);
cout<<"按递增排:";
InOrder(root);
cout<<endl;
cout<<"输入要删除的数:";
cin>>value;
SearchBST(root, pParent, pDelete, value);
if (pParent!=NULL && pDelete!=NULL)
Delete(pDelete, pParent);
else
cout<<"查找结点不存在,无法进行删除!"<<endl;
cout<<"删除后:";
InOrder(root);
cout<<endl;
return 0;
}
二叉排序树
最新推荐文章于 2024-04-21 11:01:55 发布