http://acm.hdu.edu.cn/showproblem.php?pid=1421
dp[i][j]代表前i个物品中选j对的最小疲劳度。如果j对中包含第i个物品那么这种情况下,第i种物品一定是和第i-1个物品配对,那么则dp[i][j]=dp[i-2][j-1]+(w[i]-w[i-1])*(w[i]-w[i-1])。
如果j对中不包含第i个物品那么这种情况下,退化为i-1时的情况即dp[i][j]=dp[i-1][j]。
<span style="color:#000000;">#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
const int INF = 0x3f3f3f3f;
int dp[N*2][N],a[N*2],n,k;
int main(){
// freopen("in.txt", "r", stdin);
while(scanf("%d%d",&n,&k) == 2){
for(int i=1; i<=n; i++)
scanf("%d",&a[i]);
sort(a+1, a+1+n);
for(int i=0; i<=n; i++)
for(int j=1; j<=n; j++)
dp[i][j] = INF;
for(int i=0; i<=n; i++)
dp[i][0] = 0;
for(int i=2; i<=n; i++)
for(int j=1; j*2<=i; j++)
dp[i][j] = min(dp[i-2][j-1]+(a[i]-a[i-1])*(a[i]-a[i-1]), dp[i-1][j]);
printf("%d\n",dp[n][k]);
}
return 0;
}
</span>