poj 2528 Mayor's posters

poj.org/problem?id=2528

本文章除代码部分参考:優YoU http://blog.csdn.net/lyy289065406/article/details/6799170

大致题意:

有一面墙,被等分为1QW份,一份的宽度为一个单位宽度。现在往墙上贴N张海报,每张海报的宽度是任意的,但是必定是单位宽度的整数倍,且<=1QW。后贴的海报若与先贴的海报有交集,后贴的海报必定会全部或局部覆盖先贴的海报。现在给出每张海报所贴的位置(左端位置和右端位置),问张贴完N张海报后,还能看见多少张海报?(PS:看见一部分也算看到。)

解题思路:

首先建立模型:

给定一条数轴,长度为1QW,然后在数轴上的某些区间染色,第i次对区间染色为i,共染色N次。给出每次染色的区间,问最后能看见多少种颜色。

 若第i次在区间[ai , bi]染色,则把[ai , bi]的每一格都染色为i。后染的颜色覆盖先染的颜色。由于染色N次,定义一个标记数组tagcol,从数轴第一格开始检查,一直检查到最后,出现过得颜色则记录到tagcol,最后统计tagcol中不同颜色的个数,就是所求。但是由于数据规模太大,必定TLE。因此使用线段树求解。

线段树的精髓是,能不往下搜索,就不要往下搜索,尽可能利用子树的根的信息去获取整棵子树的信息。如果在插入线段或检索特征值时,每次都非要搜索到叶子,还不如直接建一棵普通树更来得方便。

但是这题单纯用线段树去求解一样不会AC,原因是建立一棵[1,1QW]的线段树,其根系是非常庞大的,TLE和MLE是铁定的了。所以必须离散化。

通俗点说,离散化就是压缩区间,使原有的长区间映射到新的短区间,但是区间压缩前后的覆盖关系不变。举个例子:

有一条1到10的数轴(长度为9),给定4个区间[2,4] [3,6] [8,10] [6,9],覆盖关系就是后者覆盖前者,每个区间染色依次为 1 2 3 4。

现在我们抽取这4个区间的8个端点,2 4 3 6 8 10 6 9

然后删除相同的端点,这里相同的端点为6,则剩下2 4 3 6 8 10 9

对其升序排序,得2 3 4 6 8 9 10

然后建立映射

2     3     4     6     8     9   10

↓     ↓      ↓     ↓     ↓     ↓     ↓

1     2     3     4     5     6     7

那么新的4个区间为 [1,3] [2,4] [5,7] [4,6],覆盖关系没有被改变。新数轴为1到7,即原数轴的长度从9压缩到6,显然构造[1,7]的线段树比构造[1,10]的线段树更省空间,搜索也更快,但是求解的结果却是一致的。离散化时有一点必须要注意的,就是必须先剔除相同端点后再排序,这样可以减少参与排序元素的个数,节省时间。

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>

using namespace std;

const int MAX = 20010;

int n,ans,vis[MAX << 2],map[MAX << 2][2];
struct segtree{
	int l,r,c;
	int mid(){
		return (l + r) >> 1;
	}
}node[MAX << 2];

struct Line{
	int p,mark;
}line[MAX << 2];

bool cmp(const Line &A, const Line &B){
	return A.p < B.p;
}

void pushdown(int rt){//更新lazy操作
	if(node[rt].c){
		node[rt << 1].c = node[rt] .c;
		node[rt << 1 | 1].c = node[rt].c;
		node[rt].c = 0; 
	}
}

void buildtree(int l, int r, int rt){
	node[rt].l = l;
	node[rt].r = r;
	node[rt].c = 0;
	if(l == r)	return;
	int mid = node[rt].mid();
	buildtree(l, mid, rt << 1);
	buildtree(mid+1, r, rt << 1 | 1);
}

void insert(int l, int r, int rt, int color){//更新的是区间 因此要使用lazy标记 来维护线段树的时间复杂度
	if(node[rt].l >= l && node[rt].r <= r){
		node[rt].c = color;
		return;
	}
	pushdown(rt);
	int mid = node[rt].mid();
	if(r <= mid) insert(l, r, rt << 1, color);
	else if(l > mid) insert(l, r, rt << 1 | 1, color);
	else insert(l, mid, rt << 1, color), insert(mid+1, r, rt << 1 | 1, color);
}

void update(int rt){
	if(node[rt].c){
		if(!vis[node[rt].c]){
			ans++;
			vis[node[rt].c] = 1;
		}
		return;
	}
	update(rt << 1);
	update(rt << 1 | 1);
	return;
}

int main(){
	int cas;
	scanf("%d",&cas);
	while(cas--){
		scanf("%d",&n);
		for(int i=0; i<n; i++){
			scanf("%d%d",&map[i][0],&map[i][1]);
			line[i << 1].p = map[i][0], line[i << 1].mark = -(i+1);//记录线段的端点
			line[i << 1 | 1].p = map[i][1], line[i << 1 | 1].mark = (i+1);
		}
		sort(line, line + (n << 1), cmp);//离散化的排序
		int tmp = line[0].p, cnt = 1;
		for(int i=0; i<(n << 1); i++){
			if(tmp != line[i].p){//保证互异
				cnt++;
				tmp = line[i].p;
			}
			if(line[i].mark < 0)
				map[-line[i].mark - 1][0] = cnt;
			else
				map[ line[i].mark - 1][1] = cnt;
		}
		buildtree(1, cnt, 1);
		for(int i=0; i<n; i++)
			insert(map[i][0], map[i][1], 1, i + 1);//插入时采用离散后的区间
		memset(vis, 0, sizeof(vis));
		ans = 0;
		update(1);
		printf("%d\n",ans);
	}
	return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值