TensorFlow 安装

参考:http://blog.sina.com.cn/s/blog_14935c5880102wu86.html

参照:http://blog.csdn.net/wx7788250/article/details/60877166

1)执行pip install keras 报错 TypeError: parse() got an unexpected keyword argument 'transport_encoding'

解决方案:执行 conda install pip

2)执行

activate tensorflow-gpu​ 报错

  • P.S:这里的Python版本一定要选3.5.X,写这篇博客的时候官方在Windows平台上只支持3.5.X。若选择了其他版本有可能会报* Could not find a version that satisfies the requirement tensorflow-gpu (from versions: ) No matching distribution found for tensorflow-gpu*之类的错误! 
    若已经选了Python的其他版本,现有的解决方案如下(Anaconda办法): 
    P.S:一行一行的运行 
    实际上这里是Anaconda多版本Python管理工具,详细见这里

    conda create --name tensorflow python=3.5
    activate tensorflow
    conda install jupyter
    conda install scipy
    pip install tensorflow
    # or
    # pip install tensorflow-gpu
 
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

这样就会把你的机器上Python的版本改成3.5了 

P.S:这里有可能会出现找不到cudnn64_5.dll的现象,解决方法如下:

X:\cuda\bin\cudnn64_5.dll  复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin
X:\cuda\include\cudnn.h 复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\include
X:\cuda\lib\x64\cudnn.lib 复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64
 
 
  • 1
  • 2
  • 3

补充几个遇到的错误: 
Unable to load cuDNN DSO. 这个是因为装了高版本的cuDNN,而TensorFlow暂时不支持 
解决方案:去NVIDIA cuDNN下载低版本的cuDNN。解压配置好后再重复上面的复制文件即可。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值