EmguCV学习笔记 VB.Net 11.4 图像分类

版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的。

EmguCV是一个基于OpenCV的开源免费的跨平台计算机视觉库,它向C#和VB.NET开发者提供了OpenCV库的大部分功能。

教程VB.net版本请访问:EmguCV学习笔记 VB.Net 目录-CSDN博客

教程C#版本请访问:EmguCV学习笔记 C# 目录-CSDN博客

笔者的博客网址:https://blog.csdn.net/uruseibest

教程配套文件及相关说明以及如何获得pdf教程和代码,请移步:EmguCV学习笔记

学习VB.Net知识,请移步: vb.net 教程 目录_vb中如何用datagridview-CSDN博客

 学习C#知识,请移步:C# 教程 目录_c#教程目录-CSDN博客

 

11.4 图像分类

GoogleLeNet是由Google团队提出的一种深度卷积神经网络,它在图像分类任务中表现良好,可以处理大规模的图像数据集,并获得较高的准确率。GoogleLeNet在ILSVRC 2014图像分类比赛中取得了较好的成绩。

【代码位置:frmChapter11】Button2_Click

    '图像分类:Googlenet

    Private Sub Button2_Click(sender As Object, e As EventArgs) Handles Button2.Click

        '字符串数组保存对象分类名称

        Dim classnames() As String

        '对象分类,googlenet分类文件提供了1000类对象

        '将每一行(对象)加入数组

        classnames = File.ReadAllLines("C:\learnEmgucv\googlenet\label.txt")

        '需要测试的图像文件

        Dim m As New Mat("C:\learnEmgucv\tower.jpg", ImreadModes.Color)

        Dim hm As Integer = m.Height

        Dim wm As Integer = m.Width

        Dim net As Dnn.Net

        '读取网络结构文件(bvlc_googlenet.prototxt

        '和模型参数文件(bvlc_googlenet.caffemode

        net = DnnInvoke.ReadNetFromCaffe("C:\learnEmgucv\googlenet\bvlc_googlenet.prototxt",

                                           "C:\learnEmgucv\googlenet\bvlc_googlenet.caffemodel")

        '设置后端使用OpenCV

        net.SetPreferableBackend(Dnn.Backend.OpenCV)

        '设置计算模型的硬件设备

        net.SetPreferableTarget(Target.Cpu)

        Dim blob As Mat

        '转换为网络输入的blob格式

        blob = DnnInvoke.BlobFromImage(m, 1.0, New Drawing.Size(224, 224), New MCvScalar(127.5, 127.5, 127.5), False, False)

        '设置输入数据

        net.SetInput(blob)

        Dim mout As New Mat

        '进行模型推理

        mout = net.Forward()

        '最大值

        Dim maxValue As Double

        '最大坐标点

        Dim maxPoint As Point

        '在使用Googlenet进行图像分类时,

        '最大值表示是某类对象的置信度(可能性)百分比

        '最大值所对应坐标x即对象序号

        CvInvoke.MinMaxLoc(mout, Nothing, maxValue, Nothing, maxPoint)

        CvInvoke.PutText(m, "result:" & classnames(maxPoint.X) & "  " & maxValue,

                          New Point(10, 20), FontFace.HersheyDuplex, 0.8, New MCvScalar(0, 0, 255))

        ImageBox1.Image = m

End Sub

输出结果如下图所示:

 

图11-1 获得图像分类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值