python实现用*输出一个正六边形

用 * 输出一个正六边形,输入一个整数 n 代表输出的正六边形的边的长度 (*的数目)

代码::

n = int(input("input n:"))
for i in range(n, 2 * n):
    if i <= 2 * n - 1:
        print((2 * n - 1 - i) * ' ', end='')
    print(i * ' *')
a = 1
for i in range(2 * n - 2, n - 1, -1):
    while i >= 2:
        print(a * ' ', end='')
        a += 1
        break
    print(i * ' *')
n = 3
n = 3
n = 4
n = 5

 

### 如何用 Python 的 `turtle` 库在 PyCharm 中绘制六边形雪花图形 以下是实现六边形雪花图案的具体方法: #### 安装依赖库 尽管某些文档提到需要通过命令 `"pip install turtle"`[^3] 来安装 `turtle` 库,但实际上,在标准的 CPython 解释器中,`turtle` 是作为内置模块提供的,因此无需额外安装。 #### 使用 Turtle 绘制六边形雪花 为了绘制六边形雪花图案,可以利用递归的方式模拟科赫曲线的效果。下面是一个完整的代码示例,用于生成基于六边形的雪花图案: ```python import turtle def koch_curve(t, iterations, length, shortening_factor=1 / 3, angle=60): if iterations == 0: t.forward(length) else: iterations -= 1 length /= shortening_factor koch_curve(t, iterations, length, shortening_factor, angle) t.left(angle) koch_curve(t, iterations, length, shortening_factor, angle) t.right(2 * angle) koch_curve(t, iterations, length, shortening_factor, angle) t.left(angle) koch_curve(t, iterations, length, shortening_factor, angle) def draw_snowflake(t, sides, iterations, length): angle = 360 / sides for _ in range(sides): koch_curve(t, iterations, length) t.right(angle) # 初始化画布和海龟对象 t = turtle.Turtle() t.speed(0) # 设置绘图速度最快 screen = turtle.Screen() # 调整起始位置以便完整显示雪花 t.penup() t.backward(screen.window_width() // 4) t.pendown() # 参数设置 sides = 6 # 六边形雪花 iterations = 3 # 科赫曲线迭代次数 length = screen.window_height() // 7 # 初始线段长度 draw_snowflake(t, sides, iterations, length) # 结束绘图 turtle.done() ``` 上述代码实现了以下功能: - **Koch Curve**: 这是一条经典的分形曲线,能够形成复杂的几何结构[^2]。 - **Snowflake Drawing**: 基于 Koch 曲线构建了一个具有六个分支的雪花图案。 注意:此程序运行时会打开一个新的窗口来展示结果。如果希望在 PyCharm 中查看效果,请确保允许外部工具弹窗。 --- #### 关键点说明 1. **Turtle 图形填充** 如果想给雪花内部增加颜色填充,可使用 `begin_fill()` 和 `end_fill()` 方法[^1]。例如: ```python t.color("blue", "cyan") # 边框蓝色,填充青色 t.begin_fill() ... t.end_fill() ``` 2. **自定义形状注册** 若要进一步扩展设计,可通过 `register_shape()` 添加新的图案或图标。不过对于本案例,默认线条已足够表现复杂度。 3. **性能优化建议** 当提高迭代次数 (`iterations`) 或增大初始尺寸 (`length`) 后,计算量显著提升可能导致延迟现象发生。此时考虑降低分辨率或者减少细节层次以平衡效率与视觉质量之间的关系。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值