Codeforces 559C Gerald and Giant Chess(组合数学+DP)

5 篇文章 0 订阅

Codeforces 559C Gerald and Giant Chess(组合数学+DP)

  1. 题目大意:求一个矩形网格,从左上角到右下角不经过黑点的路径数

  2. 知识点:

    • 组合数取模,在膜不超过十的五次方时可以用Lucas算法简化,本题中mod=10e9+7,所以不需要Lucas,直接预处理阶乘,在求组合数还要会求出逆元

    Cmn%pLucas(m,n,p) 如 果 C n m % p 表 示 为 L u c a s ( m , n , p )

    Cmn%p=Cm%pn%pLucas(m/p,n/p,p)%p 那 么 C n m % p = C n % p m % p ∗ L u c a s ( m / p , n / p , p ) % p

3.AC代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
long long mod=1000000007;
struct node
{
        long long x,y;
}point[2010];
bool cmp(node a,node b)
{
        if(a.x==b.x)
                return a.y<b.y;
        return a.x<b.x;
}
long long dp[2010];
long long  fac[200010];
void init()//预处理阶乘
{
        fac[0]=1,fac[1]=1;
        for(long long i=2;i<=200000;i++)
        fac[i]=((fac[i-1]%mod)*(i%mod))%mod;
}
long long C(long long n,long long m)//求C(n,m)
{
        long long ans=1,res=((fac[m]%mod)*(fac[n-m]%mod))%mod;
        long long a=mod-2;
        while(a)
        {
                if(a&1)
                ans=((res%mod)*(ans%mod))%mod;
                res=((res%mod)*(res%mod))%mod;
                a=a>>1;
        }
        ans=((ans%mod)*(fac[n]%mod))%mod;
        return ans;

}
int main()
{
        long long h,w,n;
        init();
        while(~scanf("%lld%lld%lld",&h,&w,&n))
        {
                for(long long i=1;i<=n;i++)
                scanf("%lld%lld",&point[i].x,&point[i].y);
                point[n+1].x=h,point[n+1].y=w;
                sort(point+1,point+n+1,cmp);
                for(long long i=1;i<=n+1;i++)
                {
                        dp[i]=C(point[i].x+point[i].y-2,point[i].x-1)%mod;
                        //printf("%lld\n",dp[i]);
                        for(long long j=1;j<i;j++)
                        {
                                if(point[j].x<=point[i].x&&point[j].y<=point[i].y)
                                {
                                        dp[i]=((dp[i]-dp[j]*C(point[i].x-point[j].x+point[i].y-point[j].y,point[i].x-point[j].x))%mod+mod)%mod;


                                }
                        }

                //.printf("%lld\n",dp[i]);
                }
                printf("%lld\n",dp[n+1]);
        }
        return 0;
}
引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值