Description
给定平面上的一些散点集,求最远两点距离的平方值
Input
第一行为点集点数n,之后n行每行为一个点的坐标
Output
输出最远两点距离的平方值
Sample Input
4
0 0
0 1
1 1
1 0
Sample Output
2
Solution
平面上的散点集的最远的两点距离必然在这个散点集的凸包的某两个顶点上出现。那么先求凸包,再枚举顶点距离就OK了
Code
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
typedef struct
{
double x;//横坐标
double y;//纵坐标
double k;//与凸包第一个点所成角
}point;
point a[50005];
point b[50005];
int n,res;
double multiply(point x1,point x2,point x3)//叉乘
{
return ((x3.y-x2.y)*(x2.x-x1.x)-(x2.y-x1.y)*(x3.x-x2.x));
}
double distance(point x1,point x2)//两点间距离
{
return sqrt((x1.x-x2.x)*(x1.x-x2.x)+(x1.y-x2.y)*(x1.y-x2.y));
}
int compare1(const void*x1,const void*x2)//将点排序
{
point *x3,*x4;
x3=(point*)x1;
x4=(point*)x2;
if(x3->y==x4->y)
return x3->x>x4->x?1:-1;
else
return x3->y>x4->y?1:-1;
}
int compare2(const void*x1,const void*x2)//将点按斜率排
{
point *x3,*x4;
x3=(point*)x1;
x4=(point*)x2;
if(x3->k==x4->k)
{
if(x3->x==x4->x)
return x4->y>x3->y?1:-1;
else
return x4->x>x3->x?1:-1;
}
else
return x3->k>x4->k?1:-1;
}
int main()
{
int i,j,t,flag1,flag2;
double dis,len=-1;
while(scanf("%d",&n)!=EOF)
{
for(i=0;i<n;i++)
scanf("%lf%lf",&a[i].x,&a[i].y);
qsort(&a[0],n,sizeof(double)*3,compare1);
for(i=1;i<n;i++)//某点与凸包第一个点所成角
{
a[i].k=atan((double)((a[i].y-a[0].y)/(a[i].x-a[0].x)));
if(a[i].k<(double(0)))//角为负则加PI
a[i].k+=acos((double)-1);
}
qsort(&a[1],n-1,sizeof(double)*3,compare2);
b[0]=a[0];//凸包第一个点
b[1]=a[1];//凸包第二个点
b[2]=a[2];//凸包第三个点
res=3;
for(i=3;i<n;i++)
{
while(res>2&&multiply(b[res-2],b[res-1],a[i])<=0)//遇见凹点则从凸包中剔除
res--;
b[res++]=a[i];
}
for(i=0;i<res;i++)//枚举凸包顶点求最值
for(j=i+1;j<res;j++)
{
dis=distance(b[i],b[j]);
if(dis>len)
{
flag1=i;
flag2=j;
len=dis;
}
}
len=(b[flag1].x-b[flag2].x)*(b[flag1].x-b[flag2].x)+(b[flag1].y-b[flag2].y)*(b[flag1].y-b[flag2].y);
printf("%d\n",(int)len);
}
return 0;
}