Description
n头牛站成线,有朝前有朝后的的,然后每次可以选择大小为k的区间里的牛全部转向,会有一个最小操作m次使得它们全部面朝前方。问:求最小操作m,再此基础上求k
Input
第一行一个整数n表示牛数,之后n行每行一个字母表示牛的朝向,F表示朝前,B表示朝后
Output
输出k和m
Sample Input
7
B
B
F
B
F
B
B
Sample Output
3 3
Solution
首先对所有的k都求解一次,对于每个k都从最左端开始来考虑n头牛的情况。此时最坏情况下需要进行n-k+1此反转,而每次操作又要反转k头牛,此时时间复杂度为O(n^3),显然超时,所以在反转部分做优化,令f[i]:区间[i,i+k-1]进行反转则为1,否则为0
这样,在考虑第i头牛的时候,如果为奇数的话,那么这头牛的方向与起始方向相反,否则方向不变,由于,所以这个和每一次都可以在常数时间计算出来,复杂度降到了O(n^2),能够在时限内解决
Code
#include<stdio.h>
#include<string.h>
#define maxn 5001
int n,dir[maxn];//牛的方向(0:F,1:B)
int f[maxn];//区间[i,i+k-1]是否进行反转
int solve(int k)//固定k,求最少操作次数,无解返回-1
{
memset(f,0,sizeof(f));//初始化
int res=0;
int sum=0;//f的和
int i;
for(i=0;i+k<=n;i++)//计算区间[i,i+k-1]
{
if((dir[i]+sum)%2!=0)//前端的牛朝后
{
res++;
f[i]=1;
}
sum+=f[i];
if(i-k+1>=0)
sum-=f[i-k+1];
}
for(i=n-k+1;i<n;i++)//检查剩下的牛是否有朝后的情况
{
if((dir[i]+sum)%2!=0)//无解
return -1;
if(i-k+1>=0)
sum-=f[i-k+1];
}
return res;
}
int main()
{
scanf("%d",&n);
getchar();
char c;
int i;
for(i=0;i<n;i++)
{
scanf("%c",&c);
getchar();
if(c=='F')
dir[i]=0;
else
dir[i]=1;
}
int m=n,k=1;
for(i=1;i<=n;i++)
{
int t=solve(i);
if(t>=0&&m>t)//更新最小操作数
{
m=t;
k=i;
}
}
printf("%d %d\n",k,m);
return 0;
}