Description
给出一个全是0组成的三维数组,有两种操作:
0 x1 y1 z1 x2 y2 z2:把从点(x1,y1,z1)到点(x2,y2,z2)之间这个小正方体中所有元素反转,即由0变1,由1变0
1 x y z:查询点(x,y,z)上的值
Input
多组输入,每组用例第一行为两个整数n和m分别表示三维数组的任一维大小以及操作数,之后m行每行一种操作,以文件尾结束输入
Output
对于每组用例中的查询,输出点(x,y,z)上的值
Sample Input
2 5
1 1 1 1 1 1 1
0 1 1 1
1 1 1 1 2 2 2
0 1 1 1
0 2 2 2
Sample Output
1
0
1
Solution
开一个三维树状数组,把修改次数看作前缀和,对于每次查询(x,y,z),那么sum(x,y,z)&1即为答案,因为是三维的更新树状数组,所以用到了容斥,总共2^3=8种情况,最后的时间复杂度是O(M*logN*logN*logN)
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<string>
#include<set>
#include<map>
using namespace std;
#define maxn 111
int n,m;
int b[maxn][maxn][maxn];
int getsum(int x,int y,int z)
{
int sum=0;
for(int i=x;i>0;i-=i&(-i))
for(int j=y;j>0;j-=j&(-j))
for(int k=z;k>0;k-=k&(-k))
sum+=b[i][j][k];
return sum;
}
void update(int x,int y,int z)
{
for(int i=x;i<=n;i+=i&(-i))
for(int j=y;j<=n;j+=j&(-j))
for(int k=z;k<=n;k+=k&(-k))
b[i][j][k]++;
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(b,0,sizeof(b));//初始化
for(int i=0;i<m;i++)
{
int op;
scanf("%d",&op);
if(op==1)//更新操作
{
int x1,y1,z1,x2,y2,z2;
scanf("%d%d%d%d%d%d",&x1,&y1,&z1,&x2,&y2,&z2);
//容斥原理,也可以看做更新八个顶点
update(x1,y1,z1);
update(x1,y1,z2+1);
update(x1,y2+1,z1);
update(x1,y2+1,z2+1);
update(x2+1,y1,z1);
update(x2+1,y1,z2+1);
update(x2+1,y2+1,z1);
update(x2+1,y2+1,z2+1);
}
else//查询操作
{
int x1,y1,z1;
scanf("%d%d%d",&x1,&y1,&z1);
printf("%d\n",getsum(x1,y1,z1)&1);
}
}
}
return 0;
}