FZU 2082 过路费(树链剖分+BIT)

12 篇文章 0 订阅
4 篇文章 0 订阅

Description
有n座城市,由n-1条路相连通,使得任意两座城市之间可达。每条路有过路费,要交过路费才能通过。每条路的过路费经常会更新,现问你,当前情况下,从城市a到城市b最少要花多少过路费。
Input
有多组样例,每组样例第一行输入两个正整数n,m(2 <= n<=50000,1<=m <= 50000),接下来n-1行,每行3个正整数a b c,(1 <= a,b <= n , a != b , 1 <= c <= 1000000000).数据保证给的路使得任意两座城市互相可达。接下来输入m行,表示m个操作,操作有两种:一. 0 a b,表示更新第a条路的过路费为b,1 <= a <= n-1 ; 二. 1 a b , 表示询问a到b最少要花多少过路费。
Output
对于每个询问,输出一行,表示最少要花的过路费。
Sample Input
2 3
1 2 1
1 1 2
0 1 2
1 2 1
Sample Output
1
2
Solution
两个城市a,b之间的最短路即为a到根节点的距离+b到根节点的距离-2*lca(a,b)到根节点的距离,那么树链剖分之后只要我们求出每个点到根节点的距离,问题就转化为单点修改(此处用前缀和优化将区间修改变成单点修改)和区间求和问题,用树状数组存储每个节点到根节点距离,由于这道题是边权,所以我是用树链剖分之后每条边的终点(即在树中深度较深的那个点)的dfs序值来表示这条边的编号,之后就是树状数组的单点更新与区间查操作了
Code

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define maxn 55555
struct Edge
{
    int to,next;
}E[2*maxn];
int n,q,s,e[maxn][3],head[maxn],cnt,idx,size[maxn],fa[maxn],son[maxn],dep[maxn],top[maxn],l[maxn],r[maxn],bit[maxn];
void init()
{
    cnt=idx=0;
    memset(head,-1,sizeof(head));
    dep[1]=fa[1]=size[0]=0;
    memset(son,0,sizeof(son));
    memset(bit,0,sizeof(bit));
}
void add(int u,int v)
{
    E[cnt].to=v;
    E[cnt].next=head[u];
    head[u]=cnt++;
}
void dfs1(int u)
{
    size[u]=1;
    for(int i=head[u];~i;i=E[i].next)
    {
        int v=E[i].to;
        if(v!=fa[u])
        {
            fa[v]=u;
            dep[v]=dep[u]+1;
            dfs1(v);
            size[u]+=size[v];
            if(size[son[u]]<size[v]) son[u]=v;
        }
    }
}
void dfs2(int u,int topu)
{
    top[u]=topu;
    l[u]=++idx;
    if(son[u]) dfs2(son[u],top[u]);
    for(int i=head[u];~i;i=E[i].next)
    {
        int v=E[i].to;
        if(v!=fa[u]&&v!=son[u]) dfs2(v,v);
    }
    r[u]=idx;
}
void update(int x,int v)
{
    while(x<=n)
    {
        bit[x]+=v;
        x+=x&(-x);
    }
}
int getsum(int x)
{
    int ans=0;
    while(x>0)
    {
        ans+=bit[x];
        x-=x&(-x);
    } 
    return ans;
}
int lca(int u,int v) 
{
    int top1=top[u],top2=top[v];
    while(top1!=top2)
    {
        if(dep[top1]<dep[top2])
        {
            swap(top1,top2);
            swap(u,v);
        }
        u=fa[top1];
        top1=top[u];
    }
    return dep[u]<dep[v]?u:v;
}
int main()
{
    while(~scanf("%d%d",&n,&q))
    {
        init();
        int u,v,i,w,op;
        for(int i=1;i<n;i++)
        {
            scanf("%d%d%d",&e[i][0],&e[i][1],&e[i][2]);
            u=e[i][0],v=e[i][1];
            add(u,v);add(v,u);
        }
        dfs1(1);
        dfs2(1,1);
        for(int i=1;i<n;i++)
        {
            if(dep[e[i][0]]>dep[e[i][1]])//给每条边"定向"确定终点 
                swap(e[i][0],e[i][1]);
            update(l[e[i][1]],e[i][2]);
            update(r[e[i][1]]+1,-e[i][2]);
        }
        while(q--)
        {
            scanf("%d",&op);
            if(!op)
            {
                scanf("%d%d",&i,&w);
                update(l[e[i][1]],w-e[i][2]);
                update(r[e[i][1]]+1,e[i][2]-w);
                e[i][2]=w; 
            }
            else
            {
                scanf("%d%d",&u,&v);
                int d1=getsum(l[u]),d2=getsum(l[v]),d3=getsum(l[lca(u,v)]);
                printf("%d\n",d1+d2-2*d3);
            }
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值