Description
给出一棵有n个节点的树,定义1为树根,有q次询问,每次询问区间[a,b]中所有节点的LCA
Input
第一行为一整数n表示节点数,之后n-1行每行两个整数a和b表示树的一条边,然后是一整数q表示查询数,最后q行每行两个整数a和b表示查询[a,b]的LCA
Output
对于每次查询,输出查询结果
Sample Input
5
1 2
1 3
3 4
4 5
5
1 2
2 3
3 4
3 5
1 5
Sample Output
1
1
3
3
1
Solution
显然只要得到区间[a,b]dfs序最大和最小的两个点,那么这两个点的LCA就是这个区间所有点的LCA,所以问题转化为求区间最值和求两点LCA,区间最值线段树和ST都可以
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
#define maxn 311111
#define INF 0x3f3f3f3f
struct node
{
int to,next;
}edge[2*maxn];
int deep[maxn],p[maxn][22],vis[maxn],head[maxn],tot;
int idx,a[maxn],smax[maxn][22],smin[maxn][22];
int n,q,Max,Min;
void ST()
{
for(int i=0;i<n;i++)smax[i][0]=smin[i][0]=i;
int k=(int)(log(1.0*n)/log(2.0));
for(int j=1;j<=k;j++)
for(int i=0;i+(1<<j)<=n;i++)
{
if(a[smax[i][j-1]]>a[smax[i+(1<<(j-1))][j-1]])smax[i][j]=smax[i][j-1];
else smax[i][j]=smax[i+(1<<(j-1))][j-1];
if(a[smin[i][j-1]]<a[smin[i+(1<<(j-1))][j-1]])smin[i][j]=smin[i][j-1];
else smin[i][j]=smin[i+(1<<(j-1))][j-1];
}
}
int query_max(int l,int r)
{
int k=(int)(log(1.0*(r-l+1))/log(2.0));
if(a[smax[l][k]]<a[smax[r-(1<<k)+1][k]]) return smax[r-(1<<k)+1][k];
return smax[l][k];
}
int query_min(int l,int r)
{
int k=(int)(log(1.0*(r-l+1))/log(2.0));
if(a[smin[l][k]]>a[smin[r-(1<<k)+1][k]]) return smin[r-(1<<k)+1][k];
return smin[l][k];
}
void init()
{
tot=0;idx=1;
memset(head,-1,sizeof(head));
memset(vis,0,sizeof(vis));
memset(deep,0,sizeof(deep));
memset(p,-1,sizeof(p));
}
void add(int u,int v)
{
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
}
void dfs(int u)
{
vis[u]=1;
a[u-1]=idx++;
for(int i=head[u];~i;i=edge[i].next)
{
int v=edge[i].to;
if(!vis[v])
{
p[v][0]=u;
deep[v]=deep[u]+1;
dfs(v);
}
}
}
void rmq(int n)
{
for(int j=1;(1<<j)<=n;j++)
for(int i=1;i<=n;i++)
if(~p[i][j-1])
p[i][j]=p[p[i][j-1]][j-1];
}
int lca(int a,int b)
{
int i,j;
if(deep[a]<deep[b])swap(a,b);
for(i=0;(1<<i)<=deep[a];i++);
i--;
for(j=i;j>=0;j--)
if(deep[a]-(1<<j)>=deep[b])
a=p[a][j];
if(a==b)return a;
for(j=i;j>=0;j--)
if(p[a][j]!=-1&&p[a][j]!=p[b][j])
a=p[a][j],b=p[b][j];
return p[a][0];
}
int main()
{
while(~scanf("%d",&n))
{
init();
for(int i=1;i<n;i++)
{
int u,v;
scanf("%d%d",&u,&v);
add(u,v),add(v,u);
}
dfs(1);
rmq(n);
ST();
scanf("%d",&q);
while(q--)
{
int l,r;
scanf("%d%d",&l,&r);
l--,r--;
int Max=query_max(l,r)+1,Min=query_min(l,r)+1;
printf("%d\n",lca(Max,Min));
}
}
return 0;
}