POJ 3417 Network(在线倍增LCA+树形DP)

58 篇文章 1 订阅
20 篇文章 0 订阅

Description
先给出一棵有n个节点的无根树,然后下面再给出m条边,把这m条边连上,现在可以去掉一条树边和一条新边,问有多少种方案能使树断裂
Input
第一行为两个整数n和m分别表示树的节点数和新加的边数,之后n-1行每行两个整数a和b表示树的边,最后m行每行两个整数a和b表示在节点a和节点b之间加一条新边
Output
输出删去一条树边和一条新边能够使得树断裂的方案数
Sample Input
4 1
1 2
2 3
1 4
3 4
Sample Output
3
Solution
每加一条新边u-v树必成环u-lca(u,v)-v-u,给这个环上的所有树边覆盖数加一,加完新边之后,考虑树边的覆盖数:
如果一条树边的覆盖数大于1,那么显然这条树边是牢固的,即删去这条树边再删去任一条新边树都不会断裂;
如果一条树边的覆盖数为1,那么删去这条树边之后,只有再同时删去产生这个覆盖数的那条新边,树才会断裂,所以方案数加一;
如果一条树边的覆盖数为0,那么删去这条树边之后,任意删去一条新边树都会断裂,方案数加m;
那么如何统计一条边的覆盖数?首先给树固定一个方向,不妨选1节点为树根,令dp[i]表示以i为终点(在树中深度较深的点)的边的覆盖数,那么每次加一条新边u-v,只要更新u-lca(u,v)和v-lca(u,v)两条路径上的边即可,这里类似前缀和优化,dp[u]++,dp[v]++,dp[lca(u,v)]-=2,那么在操作完后深搜一遍整棵树在回溯的时候利用树形DP,dp[fa]+=sum(dp[son])即可得到每条边的覆盖数
Code

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
#define maxn 111111
struct node
{
    int to,next;
}edge[2*maxn];
int deep[maxn],p[maxn][55],vis[maxn],head[maxn],tot,dp[maxn];
void init()
{
    tot=0;
    memset(head,-1,sizeof(head));
    memset(vis,0,sizeof(vis));
    memset(deep,0,sizeof(deep));
    memset(p,-1,sizeof(p));
    memset(dp,0,sizeof(dp));
}
void add(int u,int v)
{
    edge[tot].to=v;
    edge[tot].next=head[u];
    head[u]=tot++;
}
void dfs(int u)
{
    vis[u]=1;
    for(int i=head[u];~i;i=edge[i].next)
    {
        int v=edge[i].to;
        if(!vis[v])
        {
            p[v][0]=u;
            deep[v]=deep[u]+1;
            dfs(v);
        }
    }
}
void rmq(int n)
{
    for(int j=1;(1<<j)<=n;j++)
        for(int i=1;i<=n;i++)
            if(~p[i][j-1])
                p[i][j]=p[p[i][j-1]][j-1];
}
int lca(int a,int b)
{
    int i,j;
    if(deep[a]<deep[b])swap(a,b);
    for(i=0;(1<<i)<=deep[a];i++);
    i--;
    for(j=i;j>=0;j--)
        if(deep[a]-(1<<j)>=deep[b])
            a=p[a][j];
    if(a==b)return a;
    for(j=i;j>=0;j--)
        if(p[a][j]!=-1&&p[a][j]!=p[b][j])
            a=p[a][j],b=p[b][j];
    return p[a][0];
}
void goto_dp(int u)
{
    vis[u]=1;
    for(int i=head[u];~i;i=edge[i].next)
    {
        int v=edge[i].to;
        if(!vis[v])
        {
            goto_dp(v);
            dp[u]+=dp[v];
        }
    }
}
int main()
{
    int n,m,u,v;
    while(~scanf("%d%d",&n,&m))
    {
        init();
        for(int i=1;i<n;i++)
        {
            scanf("%d%d",&u,&v);
            add(u,v),add(v,u);
        }
        dfs(1);
        rmq(n);
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d",&u,&v);
            dp[u]++,dp[v]++,dp[lca(u,v)]-=2;
        }
        memset(vis,0,sizeof(vis));
        goto_dp(1);
        int ans=0;
        for(int i=2;i<=n;i++)
            if(dp[i]==0)ans+=m;
            else if(dp[i]==1)ans++;
        printf("%d\n",ans);
    }
    return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值