Description
在一条直线上坐落着不同位置的灯塔,每一个灯塔有自己的射程范围。现在从最右边的灯塔开始激发,如果左边的灯塔在这个灯塔的范围之内,那么将会被毁灭,否则会被激发,留下自己。现在可以从右边放置一个灯塔,位置和射程范围都可以自己定义,问各种情况中最小的灯塔被毁灭的数量。
Input
第一行为一整数n表示灯塔数量,之后n行每行两个整数a和b分别表示该灯塔的位置和射程范围,保证不存在两个灯塔位于同一位置的情况
(1<=n<=100000,1<=a,b<=1000000)
Output
在右边放置一个灯塔的所有情况下,找到被毁灭灯塔的最小数量
Sample Input
4
1 9
3 1
6 1
7 4
Sample Output
1
Solution
先给所有灯塔按位置排个序,令dp[i]为激活第i个位置的灯塔时0~i中没有被毁灭灯塔的最大数量,对于每个i,如果这个位置有灯塔,那么找到这个灯塔激活时左边最后一个没有被毁灭的灯塔j,那么有dp[i]=dp[j]+1,如果j不存在(即小于0)那么dp[i]=1,如果这个位置没有灯塔,那么dp[i]=dp[i-1],递推过程中去dp[i]的最大值ans,那么n-ans就是最小灯塔毁灭数量
Code
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define maxn 111111
struct node
{
int a,b;
}p[maxn];
int n,dp[10*maxn];
int cmp(node x,node y)
{
return x.a<y.a;
}
int main()
{
while(~scanf("%d",&n))
{
for(int i=0;i<n;i++)scanf("%d%d",&p[i].a,&p[i].b);
sort(p,p+n,cmp);
int ans=0,now=0;
for(int i=0;i<=1000000;i++)
{
if(i==p[now].a)
{
int pre=p[now].a-p[now].b-1;
if(pre>=0)dp[i]=dp[pre]+1;
else dp[i]=1;
now++;
}
else dp[i]=dp[i-1];
ans=max(ans,dp[i]);
}
printf("%d\n",n-ans);
}
return 0;
}