Description
给定一个乱序的十六数码,问是否能通过一些移动,将它恢复到初始状态(0的位置表示空缺位置,非0位置上的方块可以向0移动,移动只能在上下左右四个方向进行)
Input
一个4*4的矩阵表示一个乱序的十六数码
Output
判断是否能通过一些移动将其恢复到初始状态
Sample Input
1 2 3 4
5 6 7 8
9 10 11 0
13 14 15 12
Sample Output
YES
Solution
将十六数码中非零的十五个元素看作一个一维序列,轻易得到其逆序对res1,则每次数码的左右移动不会改变这个序列的奇偶性,而上下移动一个数,例如将第i行第j个元素移到第i-1行第j个元素处,设第i-1行第j+1个元素到第i行第j-1个元素中有x个元素比这个元素大,则比这个元素小的元素有4-x个,那么这次移动对逆序对的改变就是x-(4-x)=2x-4,而这个改变不改变逆序对的奇偶性,故将某个元素移动到其应处位置对逆序对的改变=当前行-应处行,故只要统计res2=sum(i的当前行-i的应处行),判断res1和res2的奇偶性是否相同即可,相同则有解,否则无解
Code
#include<cstdio>
#include<iostream>
using namespace std;
int a[5][5],b[22];
int main()
{
for(int i=1;i<=4;i++)
for(int j=1;j<=4;j++)
scanf("%d",&a[i][j]),b[(i-1)*4+j]=a[i][j];
int res=0;
for(int i=1;i<=16;i++)
for(int j=i+1;j<=16;j++)
if(b[i]&&b[j]&&b[j]<b[i])res++;
for(int i=1;i<=4;i++)
for(int j=1;j<=4;j++)
if(a[i][j])
res+=(a[i][j]-1)/4+1+i;
if(res%2)printf("NO\n");
else printf("YES\n");
return 0;
}