Description
一个n个节点的有向树,每个点有点权w[i],对于每个节点s=1,2,…,n,需要找一个序列v[1],v[2],…,v[m]满足:
1.v[1]=s,v[i]是v[i-1]的祖先,i=2,…,m
2.最大,其中opt为AND,OR,XOR之中的一种
求
Input
第一行一整数T表示用例组数,每组用例首先输入点数n和操作opt,然后输入n个整数wi表示n个点的点权,之后n-1个整数fi表示点fi是点i的父亲节点
(T<=300,2<=n<=2^16,0<=wi<=2^16)
Output
对于每组用例输出一个整数S
Sample Input
3
5 AND
5 4 3 2 1
1 2 2 4
5 XOR
5 4 3 2 1
1 2 2 4
5 OR
5 4 3 2 1
1 2 2 4
Sample Output
91
139
195
Solution
令dp[x]=f(x)-w[x],则较容易得到转移方程dp[x]=max{dp[y]+w[x] opt w[y]},其中y是x祖先,注意到0<=w[i]<=2^16,将数字划分为前八位和后八位,对每个点x,用f[a][b]表示w[x]前八位为a,后八位opt b+dp[x]的最大值,那么每次转移求dp[x]时,若w[x]前八位为a,后八位为b,则有dp[x]=max{ f[i][b]+(i opt b)<<8 },其中i是x所有祖先的权值前八位,这个可以在dfs的时候用vis数组标记下得到,得到dp[x]之后,因为之后的dfs中需要更新f[a][i]的值,所以此处令开一个数组temp[x][i]记录一下f[a][i],回溯的时候还原即可,而更新f[a][i]就是令f[a][i]=max{ f[a][i], dp[x]+b opt i },i=0,1,…,255,所以每次更新dp数组和f数组的复杂度都是O(255),树形DP复杂度O(n),总时间复杂度为O(255n)
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long ll;
typedef unsigned int u;
#define Max(x,y) (x>y?(x):(y))
#define mod 1000000007ll
#define maxn 258
u T,n,w[maxn*maxn],f[maxn][maxn],temp[maxn*maxn][maxn],vis[maxn];
ll ans;
vector<int>v[maxn*maxn];
char op[5];
u opt(u a,u b)
{
if(op[0]=='A')return a&b;
else if(op[0]=='X')return a^b;
return a|b;
}
void dfs(int x)
{
u a=w[x]>>8,b=w[x]&255;
ll dp=0;
for(int i=0;i<256;i++)
if(vis[i])dp=Max(dp,f[i][b]+(opt(i,a)<<8));
vis[a]++;
ans=(1ll*x*(dp+w[x])%mod+ans)%mod;
for(int i=0;i<256;i++)
temp[x][i]=f[a][i],f[a][i]=Max(f[a][i],dp+opt(b,i));
for(int i=0;i<v[x].size();i++)
dfs(v[x][i]);
vis[a]--;
for(int i=0;i<256;i++)f[a][i]=temp[x][i];
}
int main()
{
scanf("%d",&T);
while(T--)
{
ans=0;
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++)v[i].clear();
scanf("%d%s",&n,op);
for(int i=1;i<=n;i++)scanf("%d",&w[i]);
for(int i=2;i<=n;i++)
{
int j;
scanf("%d",&j);
v[j].push_back(i);
}
dfs(1);
printf("%I64d\n",ans);
}
return 0;
}