SGU 200 Cracking RSA(高斯消元+高精度)

33 篇文章 0 订阅
24 篇文章 0 订阅

Description
给出m个整数,他们都是由前t个素数组成,问有多少个这m个数的子集,使得这个子集中数的乘积是一个完全平方数
Input
第一行两个整数t和m,第二行m个整数bi(1<=t,m<=100,1<=bi<=10^9)
Output
输出满足条件的集合个数
Sample Input
3 4
9 20 500 3
Sample Output
3
Solution
每个数是否被选看作变量,对每个数素因子分解就可以得到这个数被选之后对答案的影响,即某个素因子的幂指数是否是偶数,这样就得到了一个t*m的模2线性方程组,之后高斯消元即可得到自由变元的数量num,每一组自由变元的取值即得到一组合法解,答案就是2^num-1(去掉空集的情况),由于num<=100,所以要用高精度求一下2^num-1
Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
//高斯消元法解模线性方程组
#define maxn 111 
struct BigInt
{
    const static int mod=10000;
    const static int LEN=4;
    int a[11],len;
    BigInt() 
    {
        memset(a,0,sizeof(a));
        len=1;
    }
    void init(int x)
    {
        memset(a,0,sizeof(a));
        len=0;
        do
        {
            a[len++]=x%mod;
            x/=mod;
        }while(x);
    }
    BigInt operator +(const BigInt &b)const
    {
        BigInt ans;
        ans.len=max(len,b.len);
        for(int i=0;i<=ans.len;i++)ans.a[i]=0;
        for(int i=0;i<ans.len;i++)
        {
            ans.a[i]+=((i<len)?a[i]:0)+((i<b.len)?b.a[i]:0);
            ans.a[i+1]+=ans.a[i]/mod;
            ans.a[i]%=mod;
        }
        if(ans.a[ans.len]>0)ans.len++;
        return ans;
    }
    BigInt operator -(const BigInt &b)const
    {
        BigInt ans;
        ans.len=len;
        int k=0;
        for(int i=0;i<ans.len;i++)
        {
            ans.a[i]=a[i]+k-b.a[i];
            if(ans.a[i]<0)ans.a[i]+=mod,k=-1;
            else k=0;           
        }
        while(ans.a[ans.len-1]==0&&ans.len>1)ans.len--;
        return ans;
    }
    void output()
    {
        printf("%d",a[len-1]);
        for(int i=len-2;i>=0;i--)
            printf("%04d",a[i]);
        printf("\n");
    }
};
int prime[1111],is_prime[1111],res;
void get_prime(int n)
{
    memset(is_prime,0,sizeof(is_prime));
    res=0;
    for(int i=2;i<n;i++)
        if(!is_prime[i])
        {
            prime[res++]=i;
            for(int j=2*i;j<n;j+=i)is_prime[j]=1;
        }
}
int a[maxn][maxn];//增广矩阵
int x[maxn];//解集
bool free_x[maxn];//标记是否是不确定的变元
int gcd(int a,int b)
{
    return b?gcd(b,a%b):a;
}
int lcm(int a,int b)
{
    return a/gcd(a,b)*b;
}
// 高斯消元法解方程组
//-2表示有浮点数解,但无整数解
//-1表示无解
//0表示唯一解
//大于0表示无穷解,并返回自由变元的个数
//有equ个方程,var个变元
//增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.
int Gauss(int equ,int var,int mod)
{
    int i,j,k;
    int max_r;//当前这列绝对值最大的行.
    int col;//当前处理的列
    int ta,tb;
    int LCM;
    int temp;
    int free_x_num;
    int free_index;
    for(int i=0;i<=var;i++)
    {
        x[i]=0;
        free_x[i]=true;
    }
    //转换为阶梯阵.
    col=0;//当前处理的列
    for(k=0;k<equ&&col<var;k++,col++)
    {
        // 枚举当前处理的行.
        // 找到该col列元素绝对值最大的那行与第k行交换(为了在除法时减小误差)
        max_r=k;
        for(i=k+1;i<equ;i++)
        {
            if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;
        }
        if(max_r!=k)
        {// 与第k行交换.
            for(j=k;j<var+1;j++) swap(a[k][j],a[max_r][j]);
        }
        if(a[k][col]==0)
        {// 说明该col列第k行以下全是0了,则处理当前行的下一列.
            k--;
            continue;
        }
        for(i=k+1;i<equ;i++)
        {// 枚举要删去的行.
            if(a[i][col]!=0)
            {
                LCM=lcm(abs(a[i][col]),abs(a[k][col]));
                ta=LCM/abs(a[i][col]);
                tb=LCM/abs(a[k][col]);
                if(a[i][col]*a[k][col]<0)tb=-tb;//异号的情况是相加
                for(j=col;j<var+1;j++)
                {
                    a[i][j]=((a[i][j]*ta-a[k][j]*tb)%mod+mod)%mod;
                }
            }
        }
    }
    //无解的情况
    for(i=k;i<equ;i++)
    { 
        if(a[i][col]!=0) return -1;
    }
    // 无穷解的情况
    if(k<var)
    {
        //自由变元有var-k个,即不确定的变元至少有var-k个.
        for(i=k-1;i>=0;i--)
        {
            free_x_num=0; // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元.
            for(j=0;j<var;j++)
            {
                if(a[i][j]!=0&&free_x[j]) free_x_num++,free_index=j;
            }
            if(free_x_num>1) continue; // 无法求解出确定的变元.
            // 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的.
            temp=a[i][var];
            for(j=0;j<var;j++)
            {
                if(a[i][j]!=0&&j!=free_index) temp-=a[i][j]*x[j]%mod;
                temp=(temp%mod+mod)%mod;
            }
            x[free_index]=(temp/a[i][free_index])%mod;//求出该变元.
            free_x[free_index]=0;//该变元是确定的.
        }
        return var-k; //自由变元有var-k个.
    }
    //唯一解的情况 
    for(i=var-1;i>=0;i--)
    {
        temp=a[i][var];
        for(j=i+1;j<var;j++)
        {
            if(a[i][j]!=0) temp-=a[i][j]*x[j];
            temp=(temp%mod+mod)%mod;
        }
        while(temp%a[i][i]!=0) temp+=mod;
        x[i]=(temp/a[i][i])%mod;
    }
    return 0;
}
int t,m,b;
int main()
{
    get_prime(1111);
    scanf("%d%d",&t,&m);
    memset(a,0,sizeof(a));
    for(int i=0;i<m;i++)
    {
        scanf("%d",&b);
        for(int j=0;j<t;j++)
            if(b%prime[j]==0)
            {
                int cnt=0;
                while(b%prime[j]==0)b/=prime[j],cnt++;
                a[j][i]=cnt%2;
            }
    }
    for(int i=0;i<t;i++)a[i][m]=0;
    int num=Gauss(t,m,2);
    BigInt ans,temp;
    ans.init(1);
    for(int i=0;i<num;i++)
    {
        temp=ans+ans;
        ans=temp;
    } 
    temp.init(1);
    ans=ans-temp;
    ans.output();
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值