Description
给出一张n个点m条边的无向图,每条边有边权,给出q次查询,每次查询给出一个x,如果从a点到b点路径上所有边的边权都不大于x那么(a,b)合法,问这样的合法对有多少
Input
第一行一整数T表示用例组数,每组用例首先输入三个整数n,m,q分别表示点数,边数和查询数,之后m行每行三个整数u,v,w表示u和v之间有一条边权为w的边,最后q行每行一个整数x表示一次查询(T<=5,n<=20000,m<=100000,q<=5000,w<=100000)
Output
对于每次查询,输出满足条件的合法对数
Sample Input
1
5 5 3
2 3 6334
1 5 15724
3 5 5705
4 3 12382
1 3 21726
6000
10000
13000
Sample Output
2
6
12
Solution
考虑离线,先将所有查询按x从小到大排序,再将所有边按边权从小到大排序,用并查集维护点,初始每个点是一个集合,从小到大枚举x,每次拿出边权不大于x的边,将该边两端点所在集合合并,表示这两个集合中的点可以互达,那么加入这条边对答案的贡献就是A(num1+num2,2)-A(num1,2)-A(num2,2)=2*num1*num2
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
#define maxn 22222
#define maxm 111111
#define maxq 5555
int fa[maxn];//par[i]表示i的父亲的编号
int num[maxn];
void init(int n)//初始化n个元素
{
for(int i=1;i<=n;i++)
fa[i]=i,num[i]=1;
}
int find(int x)//查询树的根
{
if(fa[x]==x) return x;
return fa[x]=find(fa[x]);
}
void unite(int x,int y)//合并x和y所属的集合
{
x=find(x),y=find(y);
if(x==y) return;
fa[x]=y,num[y]+=num[x],num[x]=0;
}
struct Query
{
int v,id;
bool operator <(const Query &b)const
{
return v<b.v;
}
}query[maxq];
int ans[maxq];
struct Edge
{
int u,v,w;
bool operator <(const Edge &b)const
{
return w<b.w;
}
}edge[maxm];
int T,n,m,q;
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&m,&q);
init(n);
for(int i=1;i<=m;i++)scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w);
sort(edge+1,edge+m+1);
for(int i=1;i<=q;i++)
{
scanf("%d",&query[i].v);
query[i].id=i;
}
sort(query+1,query+q+1);
int temp=0;
for(int i=1,j=1;i<=q;i++)
{
while(j<=m&&edge[j].w<=query[i].v)
{
int u=edge[j].u,v=edge[j].v;
u=find(u),v=find(v);
if(u!=v)
{
temp+=2*num[u]*num[v];
unite(u,v);
}
j++;
}
ans[query[i].id]=temp;
}
for(int i=1;i<=q;i++)printf("%d\n",ans[i]);
}
return 0;
}