GYM 100030 L.Make Your Donation Now(枚举)

253 篇文章 2 订阅

Description
n个人为一项慈善活动捐款,第i个人捐款上下限分别是a[i]和b[i],捐款的最小金额为p,如果p < a[i],那么这个人会捐款a[i];如果a[i]<=p<=b[i],那么这个人会捐款p;如果p > b[i],那么这个人不会捐款。问如果设定p使得捐款的总金额最大
Input
第一行一整数n表示捐款的人数,之后n行每行两个整数a[i]和b[i]表示捐款上下限(1<=n<=1e5,1<=a[i] < b[i]<=1e9)
Output
输出两个整数分别为使得总捐款额最大的p的和总捐款额sum
Sample Input
2
5 10
20 25
Sample Output
10 30
Solution
显然最优的p应该是a[i]和b[i]这2n个数中的一个,对于一个p,如果小于等于p的a[i]有r个,小于等于p的b[i]有l个,那么说明p介于r-l个人的a[i]~b[i]之间,p超过了l个人的b[i]值,低于n-r个人的a[i]值,答案就是(r-l)*p+a[i]>p的n-r个人的a[i]值之和,所以把a序列升序排后求一个后缀和,b[i]也升序排,从小到大枚举一个a[i]或b[i]的值作为p值,每次更新l和r值,然后O(1)的算出该p值对应的总捐款额更新答案即可
Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define maxn 111111
int n,a[maxn],b[maxn],c[2*maxn];
ll sum[maxn];
int main()
{
    freopen("input.txt","r",stdin);
    freopen("output.txt","w",stdout);
    while(~scanf("%d",&n))
    {
        for(int i=1;i<=n;i++)
        {
            scanf("%d%d",&a[i],&b[i]);
            c[2*i]=a[i],c[2*i-1]=b[i];
        }
        sort(a+1,a+n+1);
        sort(b+1,b+n+1);
        sort(c+1,c+2*n+1);
        sum[n+1]=0;
        for(int i=n;i>0;i--)sum[i]=sum[i+1]+a[i];
        int p=0,l=1,r=1;
        ll ans=0;
        for(int i=1;i<=2*n;i++)
        {
            while(l<=n&&b[l]<c[i])l++;
            while(r<=n&&a[r]<c[i])r++;
            ll temp=sum[r]+1ll*(r-l)*c[i];
            if(temp>ans)ans=temp,p=c[i];
        }
        printf("%d %I64d\n",p,ans);
    }
    return 0;
}
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值