GYM 100712 F.Travelling Salesman(最小生成树-Kruskal)

Description
给出一张n个点,m条边的无向连通图,问最小生成树上的最大边权是多少
Input
第一行一整数T表示用例组数,每组用例首先输入两个整数n,m分别表示点数和边数,之后m行每行三个整数u,v,w表示u和v之间有一条权值为w的边(1<=T<=64,3<=n<=100000,n-1<=w<=100000,1<=u!=v<=n,1<=w<=10000)
Output
输出最小生成树上最大边权
Sample Input
这里写图片描述
Sample Output
4
2
Solution
Kruskal裸题
Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define maxn 111111
int fa[maxn];
void init(int n)
{
    for(int i=1;i<=n;i++)fa[i]=i;
} 
int find(int x)
{
    if(fa[x]==x)return x;
    return fa[x]=find(fa[x]);
}
void unite(int x,int y)
{
    x=find(x),y=find(y);
    if(x==y)return ;
    fa[x]=y;
}
int T,n,m;
struct node
{
    int u,v,w;
    bool operator<(const node&b)const
    {
        return w<b.w;
    }
}e[maxn];
int main()
{
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&m);
        init(n);
        for(int i=0;i<m;i++)scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
        sort(e,e+m);
        int ans=0;
        for(int i=0;i<m;i++)
            if(find(e[i].u)!=find(e[i].v))
            {
                ans=e[i].w;
                unite(e[i].u,e[i].v);
            }
        printf("%d\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值