Description
给出一张n个点,m条边的无向连通图,问最小生成树上的最大边权是多少
Input
第一行一整数T表示用例组数,每组用例首先输入两个整数n,m分别表示点数和边数,之后m行每行三个整数u,v,w表示u和v之间有一条权值为w的边(1<=T<=64,3<=n<=100000,n-1<=w<=100000,1<=u!=v<=n,1<=w<=10000)
Output
输出最小生成树上最大边权
Sample Input
Sample Output
4
2
Solution
Kruskal裸题
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define maxn 111111
int fa[maxn];
void init(int n)
{
for(int i=1;i<=n;i++)fa[i]=i;
}
int find(int x)
{
if(fa[x]==x)return x;
return fa[x]=find(fa[x]);
}
void unite(int x,int y)
{
x=find(x),y=find(y);
if(x==y)return ;
fa[x]=y;
}
int T,n,m;
struct node
{
int u,v,w;
bool operator<(const node&b)const
{
return w<b.w;
}
}e[maxn];
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
init(n);
for(int i=0;i<m;i++)scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
sort(e,e+m);
int ans=0;
for(int i=0;i<m;i++)
if(find(e[i].u)!=find(e[i].v))
{
ans=e[i].w;
unite(e[i].u,e[i].v);
}
printf("%d\n",ans);
}
return 0;
}