GYM 100712 I.Bahosain and Digits(枚举)

Description
给出一个长度为n的数字串,每次可以选择一个长度为k的连续子串,给其加上任意数(模10),求最大的k使得该串能够通过一些操作变成一样的数字
Input
第一行一整数T表示用例组数,每组用例输入一个数字串,串长不超过250(1<=T<=128)
Output
对于每组用例,输出合法的最大的k
Sample Input
3
04
651
0552
Sample Output
1
2
3
Solution
枚举k,对于每个k枚举最后要变成的数字,之后O(n)扫一遍判断是否合法即可,每个数只受其前k-1个数的影响,所以维护一个长度为k-1的子段和,每次就可以O(1)的累加影响,时间复杂度O(10*T*n^2)
Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define maxn 333
int T,n,a[maxn],b[maxn];
char s[maxn];
bool check(int x)
{
    for(int i=0;i<10;i++)
    {
        for(int j=1;j<=n;j++)a[j]=s[j]-'0';
        int gg=0,plus=0;
        b[0]=0;
        for(int j=1;j<=n;j++)
        {
            if(j>x)plus=(plus-b[j-x]+10)%10;
            a[j]=(a[j]+plus)%10;
            if(a[j]!=i&&j+x-1>n)
            {
                gg=1;
                break;
            }
            b[j]=(i-a[j]+10)%10;
            plus=(plus+b[j])%10;    
        }
        if(!gg)return 1;
    }
    return 0;
}
int main()
{
    scanf("%d",&T);
    while(T--)
    {
        scanf("%s",s+1);
        n=strlen(s+1);
        int ans=1;
        for(int i=2;i<=n;i++)   
            if(check(i))ans=i;
        printf("%d\n",ans);
    }
    return 0;
}
内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值