Description
给出一个长度为n的数字串,每次可以选择一个长度为k的连续子串,给其加上任意数(模10),求最大的k使得该串能够通过一些操作变成一样的数字
Input
第一行一整数T表示用例组数,每组用例输入一个数字串,串长不超过250(1<=T<=128)
Output
对于每组用例,输出合法的最大的k
Sample Input
3
04
651
0552
Sample Output
1
2
3
Solution
枚举k,对于每个k枚举最后要变成的数字,之后O(n)扫一遍判断是否合法即可,每个数只受其前k-1个数的影响,所以维护一个长度为k-1的子段和,每次就可以O(1)的累加影响,时间复杂度O(10*T*n^2)
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define maxn 333
int T,n,a[maxn],b[maxn];
char s[maxn];
bool check(int x)
{
for(int i=0;i<10;i++)
{
for(int j=1;j<=n;j++)a[j]=s[j]-'0';
int gg=0,plus=0;
b[0]=0;
for(int j=1;j<=n;j++)
{
if(j>x)plus=(plus-b[j-x]+10)%10;
a[j]=(a[j]+plus)%10;
if(a[j]!=i&&j+x-1>n)
{
gg=1;
break;
}
b[j]=(i-a[j]+10)%10;
plus=(plus+b[j])%10;
}
if(!gg)return 1;
}
return 0;
}
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%s",s+1);
n=strlen(s+1);
int ans=1;
for(int i=2;i<=n;i++)
if(check(i))ans=i;
printf("%d\n",ans);
}
return 0;
}