Description
一排n块木板,每块木板宽都是一米,第i块木板高a[i]米,每次可以刷连续的任意长度的木板,横着竖着都行,问最少几次可以刷完所有木板
Input
第一行一整数n表示木板数量,之后n个整数a[i]表示第i块木板的长度(1<=n<=5000,1<=a[i]<=1e9)
Output
输出刷完木板所需的最少次数
Sample Input
5
2 2 1 2 1
Sample Output
3
Solution
dp[l][r]表示刷完区间[l,r]所需的最小次数,对于一个区间[l,r],每块木板都竖着刷的话r-l+1次就刷完了,如果横着刷那么必然要把这个区间最短的那块刷完,不然横着刷毫无意义,所以每次对于一个区间,先横着刷,然后把该区间分成若干个区间,把每个区间的dp值加起来再加上横着刷完最短的木板所用的次数和r-l+1比较,选取一个较小值作为刷完这个区间的最优解,时间复杂度O(n^2)
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define maxn 5555
int n,a[maxn];
int Solve(int l,int r)
{
int Min=a[l];
for(int i=l+1;i<=r;i++)Min=min(Min,a[i]);
int ans=Min,pre=l;
for(int i=l;i<=r;i++)
{
a[i]-=Min;
if(a[i]==0)
ans+=Solve(pre,i-1),pre=i+1;
}
if(pre<=r)ans+=Solve(pre,r);
return min(ans,r-l+1);
}
int main()
{
while(~scanf("%d",&n))
{
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
printf("%d\n",Solve(1,n));
}
return 0;
}