Description
有n台电脑,第i台需要能量p[i]的电源充电,有m个电源,第i个电源能量为s[i],一个电源只能给一台电脑供电,第i个电源给第j台电脑供电当且仅当s[i]=p[j],有电源分流器可以将一个电源的能量减半, 一个电源可以用多个电源分流器逐次减半,问最多可以给多少台电脑供电,保证给最多电脑供电的情况下最少用多少个电源分流器
Input
第一行两整数n和m分别表示电脑数和电源数,之后n个整数p[i]表示第i台电脑需要的电源能量,最后m个整数s[i]表示第i个电源的能量(1<=n,m<=2e5,1<=p[i],s[i]<=1e9)
Output
输出最多可以供电的电脑数,保证给最多电脑供电的情况下最少用多少个电源分流器名,每个电源需要多少个电源分流器,每台电脑用哪个电源(没有电源可用的输出0)
Sample Input
2 2
1 1
2 2
Sample Output
2 2
1 1
1 2
Solution
贪心,先看已有的电源可以满足哪些就先满足,然后把没用的电源能量减半再判,以此类推即可
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define maxn 222222
int n,m,s[maxn],num[maxn],vis[maxn],pos[maxn],c,ans;
struct node
{
int p,id;
node(){};
node(int _p,int _id)
{
p=_p,id=_id;
}
bool operator<(const node& b)const
{
return p<b.p;
}
};
multiset<node>p;
multiset<node>::iterator it;
int main()
{
while(~scanf("%d%d",&n,&m))
{
p.clear();
for(int i=1;i<=n;i++)
{
int temp;
scanf("%d",&temp);
p.insert(node(temp,i));
}
for(int i=1;i<=m;i++)scanf("%d",&s[i]);
memset(num,0,sizeof(num));
memset(pos,0,sizeof(pos));
memset(vis,0,sizeof(vis));
c=0,ans=0;
for(int j=0;j<=30;j++)
{
for(int i=1;i<=m;i++)
if(!vis[i])
{
it=p.find(node(s[i],0));
if(it!=p.end())
{
pos[it->id]=i;
p.erase(it);
vis[i]=1;
num[i]=j;
c++,ans+=j;
}
}
for(int i=1;i<=m;i++)s[i]=(s[i]+1)/2;
}
printf("%d %d\n",c,ans);
for(int i=1;i<=m;i++)printf("%d%c",num[i],i==m?'\n':' ');
for(int i=1;i<=n;i++)printf("%d%c",pos[i],i==n?'\n':' ');
}
return 0;
}