Description
有n道菜,吃第i道菜的满意度为val[i],有k种高级吃法,如果在吃完第x[i]道菜后马上吃第y[i]道菜会多出一个z[i]的好感度,问吃m道菜可以得到的最大满意度
Input
第一行三个整数n,m,k分别表示菜品总数,要吃的菜品数量以及吃法种类,之后输入n个整数val[i]表示吃第i个菜品的满意度,最后k行每行三个整数x[i],y[i],z[i]表示在第x[i]道菜后面吃第y[i]道菜会多出一个z[i]的好感度
(1<=m<=n<=18,0<=k<=n*(n-1),0<=val[i],z[i]<=1e9,)
Output
输出吃m道菜可以得到的最大满意度
Sample Input
2 2 1
1 1
2 1 1
Sample Output
3
Solution
dp[i][j]表示吃了i状态的菜且最后一道吃的是第j道菜可以得到的最大满意度
对于一个状态i,找到一个i状态中出现过的j,把j放到最后一道吃,找到一个j状态中没有出现的k在j后面吃,那么有转移方程
dp[ i ^ ( 1 << k ) ][k]=max(dp[ i ^ ( 1 << k )][k], dp[i][j]+val[k]+a[j][k])
(a[j][k]表示先吃j再吃k可以获得的满意度)
最后找到所有只吃m道菜的状态,然后枚举吃的最后一道菜更新一个最大值即为答案
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define maxn (1<<20)
ll dp[maxn][20];
int n,m,k,a[20][20],val[maxn];
int main()
{
while(~scanf("%d%d%d",&n,&m,&k))
{
for(int i=0;i<n;i++)scanf("%d",&val[i]);
memset(a,0,sizeof(a));
while(k--)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
u--,v--;
a[u][v]=w;
}
memset(dp,0,sizeof(dp));
for(int i=0;i<n;i++)dp[1<<i][i]=val[i];
int N=1<<n;
for(int i=1;i<N;i++)
for(int j=0;j<n;j++)
if(i&(1<<j))
for(int k=0;k<n;k++)
if(!(i&(1<<k)))
dp[i^(1<<k)][k]=max(dp[i^(1<<k)][k],dp[i][j]+val[k]+a[j][k]);
ll ans=0;
for(int i=1;i<N;i++)
{
int num=0;
for(int j=0;j<n;j++)
if(i&(1<<j))num++;
if(num!=m)continue;
for(int j=0;j<n;j++)ans=max(ans,dp[i][j]);
}
printf("%I64d\n",ans);
}
return 0;
}