Description
给出n个整点,问这n个点中可以构成多少正m边形
Input
多组用例,每组用例首先输入一整数n表示点的个数,之后n行每行输入两整数x[i],y[i]表示第i个点的横纵坐标,以文件尾结束输入(n<=500,-100<=x[i],y[i]<=100)
Output
对于每组用例,输出n个点可以构成的正m变形个数
Sample Input
4
0 0
0 1
1 0
1 1
6
0 0
0 1
1 0
1 1
2 0
2 1
Sample Output
1
2
Solution
整点只能构成正方形,所以问题变为n个点选四个点可以构成的正方形个数,显然每给出两点坐标,都能求出两组另外两点坐标,而枚举两点去暴力查找显然不可行,所以把点的坐标hash一下加速找点的过程,注意这样求出的数量是真实数量的四倍,所以除以四才是答案
Code
#include<stdio.h>
#include<string.h>
#define maxn 555
#define mod 10007
struct node
{
int x,y,next;
}edge[maxn*maxn];
int x[maxn],y[maxn],tot,hash[mod],n;
long long ans;
void init()
{
memset(hash,-1,sizeof(hash));
tot=0;
ans=0;
}
void Go_Hash(int x,int y)
{
edge[tot].x=x;
edge[tot].y=y;
int h=(x*x+y*y)%mod;
edge[tot].next=hash[h];
hash[h]=tot++;
}
int Go_Search(int x,int y)
{
int h=(x*x+y*y)%mod;
for(int i=hash[h];~i;i=edge[i].next)
if(edge[i].x==x&&edge[i].y==y)return 1;
return 0;
}
int main()
{
while(~scanf("%d",&n))
{
init();
for(int i=0;i<n;i++)
{
scanf("%d%d",&x[i],&y[i]);
Go_Hash(x[i],y[i]);
}
for(int i=0;i<n;i++)
for(int j=i+1;j<n;j++)
{
int x1=x[i],y1=y[i],x2=x[j],y2=y[j],x3,y3,x4,y4;
x3=x1+(y1-y2);y3=y1-(x1-x2);
x4=x2+(y1-y2);y4=y2-(x1-x2);
if(Go_Search(x3,y3)&&Go_Search(x4,y4))ans++;
}
for(int i=0;i<n;i++)
for(int j=i+1;j<n;j++)
{
int x1=x[i],y1=y[i],x2=x[j],y2=y[j],x3,y3,x4,y4;
x3=x1-(y1-y2);y3=y1+(x1-x2);
x4=x2-(y1-y2);y4=y2+(x1-x2);
if(Go_Search(x3,y3)&&Go_Search(x4,y4))ans++;
}
printf("%I64d\n",ans>>2);
}
return 0;
}