LightOJ 1288 Subsets Forming Perfect Squares(高斯消元法)

Description

给出一个 n 个元素的集合S,问 S 有多少子集的乘积是一个完全平方数

Input

第一行一整数T表示用例组数,每组用例首先输入一整数 n 表示S中元素个数,之后输入 n 个正整数a1,...,an表示这 n 个元素,保证ai的最大素因子不超过300 (T100,1n1000,2ai215)

Output

输出乘积是完全平方数的子集个数,结果模 109+7

Sample Input

6

5

2 3 5 10 6

3

4 5 5

2

4 4

4

5 5 25 20

3

2 3 4

5

2 6 5 7 11

Sample Output

Case 1: 3

Case 2: 3

Case 3: 3

Case 4: 7

Case 5: 1

Case 6: 0

Solution

300以内的素数不多(62个),想要乘积是完全平方数,只要每个素因子的幂指数是偶数即可,将这 n 个元素中第i元素 ai 选或不选看作一个取值为0或1的变量 xi numi,j 表示 ai 的素因子分解中第 j 个素因子的幂指数,那么答案即为模2同余方程组num1,jx1+num2,jx2+...+numn,jxn0 mod 2,j=1,2,...,62解的个数,高斯消元法求出自由变元的个数 res ,答案即为 2res1 (去掉空集)

Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define maxn 1111
const ll mod=1e9+7;
int mark[maxn],p[maxn],res=0;
void get_prime(int n=300)
{
    memset(mark,0,sizeof(mark));
    for(int i=2;i<=n;i++)
        if(!mark[i])
        {
            p[res++]=i;
            for(int j=2*i;j<=n;j+=i)mark[j]=1;
        }
    //printf("res=%d\n",res);
}
int a[maxn][maxn];//增广矩阵
int x[maxn];//解集
bool free_x[maxn];//标记是否是不确定的变元
int gcd(int a,int b)
{
    return b?gcd(b,a%b):a;
}
int lcm(int a,int b)
{
    return a/gcd(a,b)*b;
}
// 高斯消元法解方程组
//-2表示有浮点数解,但无整数解
//-1表示无解
//0表示唯一解
//大于0表示无穷解,并返回自由变元的个数
//有equ个方程,var个变元
//增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.
int Gauss(int equ,int var,int mod)
{
    int i,j,k;
    int max_r;//当前这列绝对值最大的行.
    int col;//当前处理的列
    int ta,tb;
    int LCM;
    int temp;
    int free_x_num;
    int free_index;
    for(int i=0;i<=var;i++)
    {
        x[i]=0;
        free_x[i]=true;
    }
    //转换为阶梯阵.
    col=0;//当前处理的列
    for(k=0;k<equ&&col<var;k++,col++)
    {
        // 枚举当前处理的行.
        // 找到该col列元素绝对值最大的那行与第k行交换(为了在除法时减小误差)
        max_r=k;
        for(i=k+1;i<equ;i++)
        {
            if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;
        }
        if(max_r!=k)
        {// 与第k行交换.
            for(j=k;j<var+1;j++) swap(a[k][j],a[max_r][j]);
        }
        if(a[k][col]==0)
        {// 说明该col列第k行以下全是0了,则处理当前行的下一列.
            k--;
            continue;
        }
        for(i=k+1;i<equ;i++)
        {// 枚举要删去的行.
            if(a[i][col]!=0)
            {
                LCM=lcm(abs(a[i][col]),abs(a[k][col]));
                ta=LCM/abs(a[i][col]);
                tb=LCM/abs(a[k][col]);
                if(a[i][col]*a[k][col]<0)tb=-tb;//异号的情况是相加
                for(j=col;j<var+1;j++)
                {
                    a[i][j]=((a[i][j]*ta-a[k][j]*tb)%mod+mod)%mod;
                }
            }
        }
    }
    //无解的情况
    for(i=k;i<equ;i++)
    { 
        if(a[i][col]!=0) return -1;
    }
    // 无穷解的情况
    if(k<var)
    {
        //自由变元有var-k个,即不确定的变元至少有var-k个.
        for(i=k-1;i>=0;i--)
        {
            free_x_num=0; // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元.
            for(j=0;j<var;j++)
            {
                if(a[i][j]!=0&&free_x[j]) free_x_num++,free_index=j;
            }
            if(free_x_num>1) continue; // 无法求解出确定的变元.
            // 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的.
            temp=a[i][var];
            for(j=0;j<var;j++)
            {
                if(a[i][j]!=0&&j!=free_index) temp-=a[i][j]*x[j]%mod;
                temp=(temp%mod+mod)%mod;
            }
            x[free_index]=(temp/a[i][free_index])%mod;//求出该变元.
            free_x[free_index]=0;//该变元是确定的.
        }
        return var-k; //自由变元有var-k个.
    }
    //唯一解的情况 
    for(i=var-1;i>=0;i--)
    {
        temp=a[i][var];
        for(j=i+1;j<var;j++)
        {
            if(a[i][j]!=0) temp-=a[i][j]*x[j];
            temp=(temp%mod+mod)%mod;
        }
        while(temp%a[i][i]!=0) temp+=mod;
        x[i]=(temp/a[i][i])%mod;
    }
    return 0;
}
int T,n,Case=1;
ll f[maxn];
int main()
{
    f[0]=0;
    for(int i=1;i<=1000;i++)f[i]=(2ll*f[i-1]+1)%mod;
    get_prime();
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        memset(a,0,sizeof(a));
        for(int i=0;i<n;i++)
        {
            ll t;
            scanf("%lld",&t);
            for(int j=0;j<res;j++)
                if(t%p[j]==0)
                {
                    int num=0;
                    while(t%p[j]==0)t/=p[j],num++;
                    a[j][i]=num%2;
                }
        }
        int ans=Gauss(res,n,2);
        //printf("ans=%d\n",ans);
        printf("Case %d: %lld\n",Case++,f[ans]);
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值