关于{1,2,...,n}的子集和的一个有趣结论

参考文献:https://math.berkeley.edu/~lpachter/papers/modpaper2.pdf

Sn=1,2,...,n ,求 Sn 的子集中满足和模 n 同余k的个数 Nkn(0k<n)

引理1. 令 Pn(x)=i=1n(1+xi)=i=0n(n+1)2an,ixi wn=e2πin n 次单位根,则Nkn=san,sn+k

证明: Pn(x) 即为 Sn 的子集和为某定值的方案数的生成函数,则显然 an,r Sn 的子集和为 r 的方案数

          进而 Nkn=san,sn+k

引理2. 对非负整数 s

j=1nwsjn={0,n,nsn|s

证明:若 ns ,则 wsn=e2πisn1 j=1nwsjn=wsn(wnsn1)wsn1=0

           n|s ,则 wsjn=(e2πisn)j=1 j=1nwsjn=n

引理3. Nkn=1nj=1nwkjnPn(wjn)

证明:

j=1nwkjnPn(wjn)=j=1nwkjnr=1nan,rwrjn=r=1nan,rj=1nwj(rk)n(2)=r=1nan,rn|rkn=nsan,sn+k(1)=nNkn

引理4. Pn(wjn)=(Pn(n,j)(wn(n,j)))(n,j)

证明:

Pn(wjn)=r=1n(1+(wjn)r(n,j)(n,j))=r=1n(1+(w(n,j)n)jr(n,j))=r=1n(1+(wn(n,j))jr(n,j))=r=1n(1+(wj(n,j)n(n,j))r)

           因为 (j(n,j),n(n,j))=1 ,故 wj(n,j)n(n,j) n(n,j) 次单位根,进而当 j 1变化到 n 时,每一个wj(n,j)n(n,j)出现 (n,j) 次,且对每个 j wjr(n,j)n(n,j),r=1,..,n(n,j) wrn(n,j),r=1,..,n(n,j) 的一个排列,进而
Pn(wjn)=(r=1n(n,j)(1+(wj(n,j)n(n,j))r))(n,j)=(r=1n(n,j)(1+wrn(n,j)))(n,j)=(Pn(n,j)(wn(n,j)))(n,j)


引理5. Pr(wr)=1(1)r

证明:考虑方程 xr1=(xwr)(xw2r)...(xwrr)

           代入 x=1 得, (1)r1=(1)r(1+wr)(1+w2r)...(1+wrr)=(1)rPr(wr)

           进而有 Pr(wr)=1(1)r


引理6.

Pn(wjn)=2(n,j),0,n(n,j)n(n,j)

证明:
Pn(wjn)=(Pn(n,j)(wn(n,j)))(n,j)(4)=(1(1)n(n,j))(n,j)5=2(n,j),0,n(n,j)n(n,j)

引理7. 假设 t|n,δ=nt ,则

xZ×δwktxn=φ(δ)φ(δ(k,δ))xZ×δ(k,δ)wxδ(k,δ)

证明:注意到 wtxn=wxδ ,并且如果 xZ×δ ,则 xZ×δ ,故有
xZ×δwktxn=xZ×δwkxδ=xZ×δwk(k,δ)xδ(k,δ)

           由于 (k(k,δ),δ(k,δ))=1 ,故 wk(k,δ)δ(k,δ) δ(k,δ) 次单位根,当 x 取遍Z×δ时,每一个 wk(k,δ)δ(k,δ) 会出现 φ(δ)φ(δ(k,δ)) 次,且 wk(k,δ)xδ(k,δ),xZ×δ(k,δ) wxδ(k,δ),xZ×δ(k,δ) 的一个排列,故有 xZ×δwktxn=φ(δ)φ(δ(k,δ))xZ×δ(k,δ)wxδ(k,δ)

引理8. Φn(x) n 次分圆多项式,即Φn(x)=1rn;(r,n)=1(xwrn),则 Φn(x)=r|n(xnr1)μ(r)

证明:

xn1=r=1n(xwrn)=d|n1rn;(r,n)=d(xwrn)=d|n1rn;(r,n)=d(xwrdnd)=d|n1rnd;(r,nd)=1(xwrnd)=d|nΦnd(x)=d|nΦd(x)

           由莫比乌斯反演得 Φn(x)=r|n(xnr1)μ(r)


引理9. Φn(x)=Φd(xm) ,其中 d n的所有不同素因子之积, m=nd

证明: Φn(x)=r|n(xnr1)μ(r) Φd(xm)=s|d((xm)ds1)μ(s)=s|d(xns1)μ(s)

           注意到若 r|n rd ,则 r 必有平方因子,进而μ(r)=0

           r|n(xnr1)μ(r)=r|d(xnr1)μ(r) Φn(x)=Φd(xm)

引理10. Φpn(x)=Φn(xp)(Φn(x))1 ,其中 p 是素数且pn

证明:

Φpn(x)=r|pn(xnpr1)μ(r)=r|pn;pr(xnpr1)μ(r)r|pn;p|r(xnpr1)μ(r)=r|n(xnpr1)μ(r)s|n(xns1)μ(sp)

           注意到 s|n,pn p 是素数,故有(s,p)=1,进而 μ(sp)=μ(s)μ(p)=μ(s)

           故有 Φpn(x)=Φn(xp)(Φn(x))1

引理11. tZ×nwtn=μ(n)

证明: Φn(x)=1rn;(r,n)=1(xwrn)=xφ(n)tZ×nwtnxφ(n)1+...+(1)φ(n)tZ×nwtn

           tZ×nwtn Φn(x) 的属于 xφ(n)1 的系数的相反数

           1.若存在一个素数 p 满足p2|n,此时 μ(n)=0 ,由引理9, Φn(x)=Φd(xm) ,其中 p|d,p|m

           故对 Φd(xm) 的任一项,其次数必然被 p 整除,即p会整除 Φn(x) 的所有项的次数

           φ(n)=mφ(d) ,故 p|φ(n) ,进而 p(φ(n)1) ,即此时 Φn(x) 的属于 xφ(n)1 的系数是 0

          2.若对于任意素数 p 均有p2n,即 n 为无平方因子数,记n=p1p2...pm,pi是互不相同的素数

           用数学归纳法证明, Φn(x) 的属于 xφ(n)1 的系数是 (1)m+1 即证明该引理

           n=1 时, tZ×1wt1=1=μ(1) ,结论成立

           假设对所有 n=p1p2...pm,pi 是互不相同的素数结论均成立

           下证 Φpn(x) 的属于 xφ(pn)1 的系数是 (1)m+2 ,其中 p 是与pi不同的素数

           由引理10知 Φpn(x)Φn(x)=Φn(xp)

           Φpn(x) 的最高次项为 xφ(pn) ,次高项为 axφ(pn)1

           Φn(x) 的最高次项为 xφ(n) ,次高项为 (1)m+1xφ(n)1

           Φpn(x)Φn(x) 的属于次高项 xφ(pn)+φ(n)1 的系数为 (1)m+1+a

           φ(pn)+φ(n)1=(p1)φ(n)+φ(n)1=pφ(n)1,ppφ(n)1

           这意味着 Φpn(x) 的属于 xpφ(n)1 的系数为 0 ,即(1)m+1+a=0,进而 a=(1)m+2

           由数学归纳法知结论成立


定理: Nkn=1nt|n;t2ntφ(t)φ(t(k,t))μ(t(k,t))

证明:由引理3, Nkn=1nj=1nwkjnPn(wjn)

           由引理4, Nkn=1nj;n(n,j)wkjn2(n,j)

           t=n(n,j) Nkn=1nt|n;t2ntxZ×twkntxn

           由引理7, Nkn=1nt|n;t2ntφ(t)φ(t(n,t))xZ×t(k,t)wxt(k,t)

           由引理11, Nkn=1nt|n;t2ntφ(t)φ(t(n,t))μ(t(n,t))

           特别的,当 k=0 时, N0n=1nt|n;t2ntφ(t)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值