CodeForces 336 D.Vasily the Bear and Beautiful Strings(组合数学)

Description

定义一个 01 串的权值为,每次把该字符串的最后两位变成一位(如果是两个 0 就变成1,否则变成 0 ),最后只剩一位即为该字符串的权值,问包含n 0 m 1 的权为g的长度为 n+m 01 串个数

Input

三个整数 n,m,g(0n,m105,n+m1,0g1)

Output

输出满足条件的字符串数量,结果模 109+7

Sample Input

1 1 0

Sample Output

2

Solution

n=0 时,如果 m=1 则权为 1 ,否则权为0

m=0 时,如果 n 为奇数则权为0,否则权为 1

n,m0时,如果想得到权为 1 的字符串,只有两种情况

1.奇数个 0+1+ 非空任意数,这样奇数个 0 后面必然多一个0变成偶数个 0 ,权是1

2 .偶数个0+1 01 变成 0 ,进而变成偶数个0,权是 1

分别计数即得到权为1的字符串个数,如果问的是权为 0 的字符串,则拿总数Cnn+m减去权为 1 <script type="math/tex" id="MathJax-Element-39">1</script>的字符串即可

Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const int INF=0x3f3f3f3f,maxn=200005;
#define mod 1000000007
int fact[maxn],inv[maxn];
void init(int n=2e5)
{
    fact[0]=1;
    for(int i=1;i<=n;i++)fact[i]=(ll)i*fact[i-1]%mod;
    inv[1]=1;
    for(int i=2;i<=n;i++)inv[i]=mod-(ll)(mod/i)*inv[mod%i]%mod;
    inv[0]=1;
    for(int i=1;i<=n;i++)inv[i]=(ll)inv[i-1]*inv[i]%mod;
}
int C(int n,int m)
{
    return (ll)fact[n]*inv[m]%mod*inv[n-m]%mod;
}
int main()
{
    init();
    int n,m,g;
    while(~scanf("%d%d%d",&n,&m,&g))
    {
        if(!n)
        {
            if(m==1&&g==1||m>1&&g==0)printf("1\n");
            else printf("0\n");
        }
        else if(!m)
        {
            if(n%2==1&&g==0||n%2==0&&g==1)printf("1\n");
            else printf("0\n");
        }
        else
        {    
            int ans=0;
            for(int i=1;i<=n;i+=2)
                if(n-i+m-1)ans=(ans+C(n-i+m-1,m-1))%mod;
            if(n%2==0&&m==1)ans++;
            if(!g)ans=(C(n+m,m)-ans+mod)%mod;
            printf("%d\n",ans);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值