Description
给出数轴上n个地点的坐标
Input
第一行一整数n,之后输入
Output
输出距离期望值的最简分数表示
Sample Input
3
2 3 5
Sample Output
22 3
Solution
对于一个排列p1,...,pn,其对应的距离为ap1+∑i=1n−1|api−api+1|
考虑ai对答案的影响(假设a序列已经升序)
如果
如果pn=i,考虑pn−1的取值,其他n−2个数字随便排,如果pn−1>pn,那么对答案贡献是−ai,如果pn−1<pn,那么对答案贡献是ai,故这种情况对答案的贡献就是((i−1)−(n−i))⋅(n−2)!⋅ai
如果pj=i,2≤j≤n−1,考虑pj−1和pj+1的取值,其他n−3个数字随便排,如果两者比pj一大一小,则对答案贡献是0,如果都比
故ai对总距离和贡献的次数为(n−2)!⋅(2⋅(i−1)+2⋅i−n−1+2⋅(A2i−1−A2n−i))=(n−1)!⋅(4⋅i−2⋅n−1)
进而求得期望为∑i=1n(4i−2n−1)⋅ain
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const int INF=0x3f3f3f3f,maxn=100005;
ll gcd(ll a,ll b)
{
return b?gcd(b,a%b):a;
}
int n,a[maxn];
int main()
{
int n;
while(~scanf("%d",&n))
{
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
sort(a+1,a+n+1);
ll ans=0;
for(int i=1;i<=n;i++)
ans+=(ll)(4*i-2*n-1)*a[i];
ll g=gcd(ans,n);
printf("%I64d %I64d\n",ans/g,n/g);
}
return 0;
}
数轴旅行问题

探讨了在数轴上随机旅行的数学问题,通过分析不同位置的贡献来计算期望行走距离,并给出了具体的算法实现。
1411

被折叠的 条评论
为什么被折叠?



