CodeForces 340 C.Tourist Problem(组合数学)

数轴旅行问题
探讨了在数轴上随机旅行的数学问题,通过分析不同位置的贡献来计算期望行走距离,并给出了具体的算法实现。

Description

给出数轴上n个地点的坐标a1,...,an,随机的给出一个排列,按照该排列去一个个到达排列对应的地点,初始在原点处,问所走距离的期望值

Input

第一行一整数n,之后输入n个整数ai(2n105,1ai107)

Output

输出距离期望值的最简分数表示

Sample Input

3
2 3 5

Sample Output

22 3

Solution

对于一个排列p1,...,pn,其对应的距离为ap1+i=1n1|apiapi+1|

考虑ai对答案的影响(假设a序列已经升序)

如果p1=i,考虑p2的取值,其他n2个数字随便排,如果p2>p1,那么一加一减,ai对答案贡献是0,如果p2<p1,那么两次都是加,对答案贡献是2ai,故这种情况对答案的贡献就是2(i1)(n2)!ai

如果pn=i,考虑pn1的取值,其他n2个数字随便排,如果pn1>pn,那么对答案贡献是ai,如果pn1<pn,那么对答案贡献是ai,故这种情况对答案的贡献就是((i1)(ni))(n2)!ai

如果pj=i,2jn1,考虑pj1pj+1的取值,其他n3个数字随便排,如果两者比pj一大一小,则对答案贡献是0,如果都比pj大,那么对答案贡献就是2ai,如果都比pj小,那么对答案贡献就是2ai,故这种情况对答案的贡献就是(n2)(n3)!2(A2i1A2ni)ai

ai对总距离和贡献的次数为(n2)!(2(i1)+2in1+2(A2i1A2ni))=(n1)!(4i2n1)

进而求得期望为i=1n(4i2n1)ain

Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const int INF=0x3f3f3f3f,maxn=100005;
ll gcd(ll a,ll b)
{
    return b?gcd(b,a%b):a;
}
int n,a[maxn];
int main()
{
    int n;
    while(~scanf("%d",&n))
    {
        for(int i=1;i<=n;i++)scanf("%d",&a[i]);
        sort(a+1,a+n+1);
        ll ans=0;
        for(int i=1;i<=n;i++)
            ans+=(ll)(4*i-2*n-1)*a[i];
        ll g=gcd(ans,n);
        printf("%I64d %I64d\n",ans/g,n/g);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值