CodeForces 382 E.Ksenia and Combinatorics(组合数学+dp)

Description

要求构造一个 n 个节点的树使其满足以下三个条件:

1.树带标号,点的标号为1~ n

2.每个节点的度数不超过3 1 节点度数不超过2

3.树的最大匹配为 k

Input

两个整数n,k(1n,k50)

Output

输出满足条件的树的个数,结果模 109+7

Sample Input

2 1

Sample Output

1

Solution

1 节点看作根节点,那么问题变成构造最大匹配为k的二叉树个数, dp[i][j][0|1] 表示用 i 个节点(根节点固定),最大匹配是j且根节点: 1 .被使用,0:未被使用,枚举左子树数量 l (为避免记重,假设左子树节点不超过右子树),从i1个节点选出 l 个节点方案数为Cli1(注意左右子树节点数相同时要除二),确定左右子树根节点方案数 lr (注意左子树为空树的情况),然后枚举左子树最大匹配数 x <script type="math/tex" id="MathJax-Element-61">x</script>,如果根节点左右儿子都没有没用,那么根节点必然要和左儿子或者右儿子匹配,如果根节点左右儿子都被用了,那么根节点就没法和儿子匹配,进而得到转移方程

Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const int INF=0x3f3f3f3f,maxn=55;
#define mod 1000000007
#define inv2 500000004
int n,k,C[maxn][maxn],dp[maxn][maxn][2];
void add(int &x,int y)
{
    x=x+y>=mod?x+y-mod:x+y;
}
int main()
{
    C[0][0]=1;
    for(int i=1;i<=50;i++)
    {
        C[i][0]=C[i][i]=1;
        for(int j=1;j<i;j++)add(C[i][j],C[i-1][j-1]+C[i-1][j]);
    }
    scanf("%d%d",&n,&k);
    if(k>n/2)printf("0\n");
    else
    {
        dp[1][0][0]=dp[0][0][1]=1;
        for(int i=1;i<=n;i++)
            for(int j=0;j<=k;j++)
                for(int l=0,r=i-1;l<=r;l++,r--)
                    for(int x=0;x<=j;x++)
                    {
                        int temp=1;
                        temp=C[i-1][l];
                        if(l==r)temp=(ll)temp*inv2%mod;
                        if(l)temp=(ll)temp*l%mod*r%mod;
                        else temp=(ll)temp*r%mod;
                        add(dp[i][j][0],(ll)dp[l][x][1]*dp[r][j-x][1]%mod*temp%mod);
                        if(x<j)
                        {
                            add(dp[i][j][1],(ll)dp[l][x][1]*dp[r][j-x-1][0]%mod*temp%mod);
                            add(dp[i][j][1],(ll)dp[l][x][0]*dp[r][j-x-1][1]%mod*temp%mod);
                            add(dp[i][j][1],(ll)dp[l][x][0]*dp[r][j-x-1][0]%mod*temp%mod);
                        }
                    }
        printf("%d\n",(dp[n][k][0]+dp[n][k][1])%mod);
    }
    return 0;
}
### Codeforces Div.2 比赛难度介绍 Codeforces Div.2 比赛主要面向的是具有基础编程技能到中级水平的选手。这类比赛通常吸引了大量来自全球不同背景的参赛者,包括大学生、高中生以及一些专业人士。 #### 参加资格 为了参加 Div.2 比赛,选手的评级应不超过 2099 分[^1]。这意味着该级别的竞赛适合那些已经掌握了一定算法知识并能熟练运用至少一种编程语言的人群参与挑战。 #### 题目设置 每场 Div.2 比赛一般会提供五至七道题目,在某些特殊情况下可能会更多或更少。这些题目按照预计解决难度递增排列: - **简单题(A, B 类型)**: 主要测试基本的数据结构操作和常见算法的应用能力;例如数组处理、字符串匹配等。 - **中等偏难题(C, D 类型)**: 开始涉及较为复杂的逻辑推理能力和特定领域内的高级技巧;比如图论中的最短路径计算或是动态规划入门应用实例。 - **高难度题(E及以上类型)**: 对于这些问题,则更加侧重考察深入理解复杂概念的能力,并能够灵活组合多种方法来解决问题;这往往需要较强的创造力与丰富的实践经验支持。 对于新手来说,建议先专注于理解和练习前几类较容易的问题,随着经验积累和技术提升再逐步尝试更高层次的任务。 ```cpp // 示例代码展示如何判断一个数是否为偶数 #include <iostream> using namespace std; bool is_even(int num){ return num % 2 == 0; } int main(){ int number = 4; // 测试数据 if(is_even(number)){ cout << "The given number is even."; }else{ cout << "The given number is odd."; } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值