CodeForces 382 E.Ksenia and Combinatorics(组合数学+dp)

202 篇文章 1 订阅
190 篇文章 1 订阅

Description

要求构造一个 n 个节点的树使其满足以下三个条件:

1.树带标号,点的标号为1~ n

2.每个节点的度数不超过3 1 节点度数不超过2

3.树的最大匹配为 k

Input

两个整数n,k(1n,k50)

Output

输出满足条件的树的个数,结果模 109+7

Sample Input

2 1

Sample Output

1

Solution

1 节点看作根节点,那么问题变成构造最大匹配为k的二叉树个数, dp[i][j][0|1] 表示用 i 个节点(根节点固定),最大匹配是j且根节点: 1 .被使用,0:未被使用,枚举左子树数量 l (为避免记重,假设左子树节点不超过右子树),从i1个节点选出 l 个节点方案数为Cli1(注意左右子树节点数相同时要除二),确定左右子树根节点方案数 lr (注意左子树为空树的情况),然后枚举左子树最大匹配数 x <script type="math/tex" id="MathJax-Element-61">x</script>,如果根节点左右儿子都没有没用,那么根节点必然要和左儿子或者右儿子匹配,如果根节点左右儿子都被用了,那么根节点就没法和儿子匹配,进而得到转移方程

Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const int INF=0x3f3f3f3f,maxn=55;
#define mod 1000000007
#define inv2 500000004
int n,k,C[maxn][maxn],dp[maxn][maxn][2];
void add(int &x,int y)
{
    x=x+y>=mod?x+y-mod:x+y;
}
int main()
{
    C[0][0]=1;
    for(int i=1;i<=50;i++)
    {
        C[i][0]=C[i][i]=1;
        for(int j=1;j<i;j++)add(C[i][j],C[i-1][j-1]+C[i-1][j]);
    }
    scanf("%d%d",&n,&k);
    if(k>n/2)printf("0\n");
    else
    {
        dp[1][0][0]=dp[0][0][1]=1;
        for(int i=1;i<=n;i++)
            for(int j=0;j<=k;j++)
                for(int l=0,r=i-1;l<=r;l++,r--)
                    for(int x=0;x<=j;x++)
                    {
                        int temp=1;
                        temp=C[i-1][l];
                        if(l==r)temp=(ll)temp*inv2%mod;
                        if(l)temp=(ll)temp*l%mod*r%mod;
                        else temp=(ll)temp*r%mod;
                        add(dp[i][j][0],(ll)dp[l][x][1]*dp[r][j-x][1]%mod*temp%mod);
                        if(x<j)
                        {
                            add(dp[i][j][1],(ll)dp[l][x][1]*dp[r][j-x-1][0]%mod*temp%mod);
                            add(dp[i][j][1],(ll)dp[l][x][0]*dp[r][j-x-1][1]%mod*temp%mod);
                            add(dp[i][j][1],(ll)dp[l][x][0]*dp[r][j-x-1][0]%mod*temp%mod);
                        }
                    }
        printf("%d\n",(dp[n][k][0]+dp[n][k][1])%mod);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值