Description
正
n
边形上
Input
第一行一整数
n
表示点数,之后输入
Output
输出在多边形内部交点个数
Sample Input
5
4 1 5 3 2
Sample Output
2
Solution
对于一条边
u↔v
,如果与另一条边
u′↔v′
相交,那么说明
u′,v′
中一点在
(min(u,v),max(u,v))
之间,另一点在该区间之外,把所有的边(假设第一端点小于第二端点)按第一端点升序排,第二端点降序排,然后一条条拿出来计算贡献,用树状数组维护已经访问过的边的第二端点,那么当前插入的边
u↔v
作为相交两条边中第一端点较大的边,对答案的贡献即为之前访问过的边中第二端点介于
(u,v)
之间的,因为这些边第一端点必然小于
u
(虽然存在第一端点等于
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const int INF=0x3f3f3f3f,maxn=100005;
struct BIT
{
#define lowbit(x) (x&(-x))
int b[maxn];
void init()
{
memset(b,0,sizeof(b));
}
void update(int x,int v)
{
while(x<maxn)
{
b[x]+=v;
x+=lowbit(x);
}
}
int query(int x)
{
int ans=0;
while(x)
{
ans+=b[x];
x-=lowbit(x);
}
return ans;
}
}bit;
int n,p[maxn];
P a[maxn];
int main()
{
while(~scanf("%d",&n))
{
bit.init();
for(int i=1;i<=n;i++)
{
scanf("%d",&p[i]);
a[i].first=min(i,p[i]),a[i].second=-max(i,p[i]);
}
sort(a+1,a+n+1);
//for(int i=1;i<=n;i++)printf("%d %d\n",a[i].first,a[i].second);
ll ans=0;
for(int i=1;i<=n;i++)
{
ans+=bit.query(-a[i].second-1)-bit.query(a[i].first);
bit.update(-a[i].second,1);
}
printf("%I64d\n",ans);
}
return 0;
}