HDU 6203 ping ping ping(在线倍增LCA+BIT)

54 篇文章 0 订阅
20 篇文章 0 订阅

Description

给出一棵 n+1 n + 1 个节点的树,要求破坏尽可能少的点使得所给 m m 对点对均不可互达

Input

第一行一整数n,之后 n n 行每行两个整数u,v表示一条树边,然后输入一整数 m m ,最后m行每行两个整数 u,v u , v 表示需要使得 u,v u , v 不可互达 (3n104,1p5104) ( 3 ≤ n ≤ 10 4 , 1 ≤ p ≤ 5 ⋅ 10 4 )

Output

输出需要删去的最少点数

Sample Input

4
1 0
4 2
2 0
3 2
2
1 3
2 1

Sample Output

1

Solution

为使被删掉的点尽可能起作用,对于一个点对要删去影响最大的点,即其 LCA L C A ,对每个点对求出其 LCA L C A ,把查询按点对 LCA L C A 深度降序排,先处理 LCA L C A 深度最深的点对,因为先处理其他点对不能解决该点对的问题,但是先解决该点对的问题可以顺带就解决了其他点对的问题,删去 LCA L C A 后,为了保留下删除该点的影响,把以该点为根的子树全部标记加一,这样以来,对于后面的点对 u,v u , v ,如果 u u v的标记非零,说明 u u v的某个祖先被删掉了,且这个被删掉的祖先深度比 u,v u , v LCA L C A 深度深,也即当前点对不需要删点已经被解决掉了,对子树的更新操作求出 dfs d f s 序后用树状数组维护即可

Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
#define maxn 10005
#define maxm 50005
int n,m,p[maxn][15],dep[maxn],index,L[maxn],R[maxn];
vector<int>g[maxn];
void dfs(int u,int fa)
{
    p[u][0]=fa;
    for(int i=1;i<15;i++)p[u][i]=p[p[u][i-1]][i-1];
    L[u]=++index;
    for(int i=0;i<g[u].size();i++)
    {
        int v=g[u][i];
        if(v==fa)continue;
        dep[v]=dep[u]+1;
        dfs(v,u);
    }
    R[u]=index;
}
int lca(int a,int b)
{
    int i,j;
    if(dep[a]<dep[b])swap(a,b);
    for(i=0;(1<<i)<=dep[a];i++);
    i--;
    for(j=i;j>=0;j--)
        if(dep[a]-(1<<j)>=dep[b])
            a=p[a][j];
    if(a==b) return a;
    for(j=i;j>=0;j--)
        if(p[a][j]&&p[a][j]!=p[b][j])
            a=p[a][j],b=p[b][j];
    return p[a][0];
} 
struct BIT 
{
    #define lowbit(x) (x&(-x))
    int b[maxn],n;
    void init(int _n)
    {
        n=_n;
        for(int i=1;i<=n;i++)b[i]=0;
    }
    void update(int x,int v)
    {
        while(x<=n)
        {
            b[x]+=v;
            x+=lowbit(x);
        }
    }
    int query(int x)
    {
        int ans=0;
        while(x)
        {
            ans+=b[x];
            x-=lowbit(x);
        }
        return ans;
    }
}bit;
struct node
{
    int u,v,t;
    bool operator<(const node&b)const
    {
        return dep[t]>dep[b.t];
    }
}a[maxm];
int main()
{
    while(~scanf("%d",&n))
    {
        n++;
        bit.init(n);
        for(int i=1;i<=n;i++)g[i].clear();
        memset(p,0,sizeof(p));
        for(int i=1;i<n;i++)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            u++,v++;
            g[u].push_back(v),g[v].push_back(u);
        }
        index=0;
        dep[1]=0;
        dfs(1,0);
        scanf("%d",&m);
        for(int i=0;i<m;i++)
        {
            scanf("%d%d",&a[i].u,&a[i].v);
            a[i].u++,a[i].v++;
            a[i].t=lca(a[i].u,a[i].v);
        }
        sort(a,a+m);
        int ans=0;
        for(int i=0;i<m;i++)
        {
            int u=a[i].u,v=a[i].v,t=a[i].t;
            int temp=bit.query(L[u])+bit.query(L[v]);
            if(!temp)
            {
                ans++;
                bit.update(L[t],1),bit.update(R[t]+1,-1);
            }
        }
        printf("%d\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值