Description
给出一个长度为 n n 的序列,要求把该序列分成非空的三部分,使得这三部分各自的和相同,问方案数
Input
第一行一整数表示序列长度,之后输入 n n 个整数表示该序列 (1≤n≤105,|ai|≤104) ( 1 ≤ n ≤ 10 5 , | a i | ≤ 10 4 )
Output
输出方案数
Sample Input
4
1 2 3 3
Sample Output
1
Solution
对序列求一个前缀和 si=a1+...+ai s i = a 1 + . . . + a i ,如果 sn s n 不能被三整除显然无解,否则令 x=sn3 x = s n 3 ,令 numi n u m i 表示 s1,...,si s 1 , . . . , s i 中等于 x x 的前缀和个数,之后从后往前维护后缀和,即,如果 res=x r e s = x ,则说明 ai,...,an a i , . . . , a n 可以作为第三段,那么第一段就是 s1,...,si−2 s 1 , . . . , s i − 2 中等于 x x 的前缀和个数,即,累加入答案即可
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const int INF=0x3f3f3f3f,maxn=100005;
int n,a[maxn],s[maxn],num[maxn];
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
s[i]=s[i-1]+a[i];
}
if(s[n]%3)printf("0\n");
else
{
int x=s[n]/3;
ll ans=0;
for(int i=1;i<=n;i++)
num[i]=num[i-1]+(s[i]==x);
int res=0;
for(int i=n;i>2;i--)
{
res+=a[i];
if(res==x)ans+=num[i-2];
}
printf("%I64d\n",ans);
}
return 0;
}