HDU 2601 An easy problem(数论)

201 篇文章 10 订阅

Description

给出一整数 n n ,问有多少种方案将n表示成 ij+i+j(1ij) i ⋅ j + i + j ( 1 ≤ i ≤ j ) 的形式

Input

第一行一整数 T T 表示用例组数,每组用例输入一整数n(1T2000,0n1010)

Output

对于每组用例输出方案数

Sample Input

2
1
3

Sample Output

0
1

Solution

n+1=(i+1)(j+1),i<j n + 1 = ( i + 1 ) ( j + 1 ) , i < j ,方案数即 (n+1 ( n + 1 的因子数 +1)/2 + 1 ) / 2

Code

#include<cstdio>
#include<iostream>
#include<cmath>
using namespace std;
typedef long long ll;
int main()
{
    int T;
    ll n;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%I64d",&n);
        n++;
        int ans=0,q=sqrt(n);
        for(int i=2;i<=q;i++)
            if(n%i==0)
                ans++;
        printf("%d\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值